How to Install and Uninstall python3-astroML.noarch Package on Fedora 34
Last updated: November 17,2024
1. Install "python3-astroML.noarch" package
Learn how to install python3-astroML.noarch on Fedora 34
$
sudo dnf update
Copied
$
sudo dnf install
python3-astroML.noarch
Copied
2. Uninstall "python3-astroML.noarch" package
Here is a brief guide to show you how to uninstall python3-astroML.noarch on Fedora 34:
$
sudo dnf remove
python3-astroML.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-astroML.noarch package on Fedora 34
Last metadata expiration check: 3:03:03 ago on Tue Sep 6 02:10:55 2022.
Available Packages
Name : python3-astroML
Version : 0.4.1
Release : 5.fc34
Architecture : noarch
Size : 206 k
Source : python-astroML-0.4.1-5.fc34.src.rpm
Repository : fedora
Summary : Python tools for machine learning and data mining in Astronomy
URL : http://www.astroml.org/
License : BSD
Description : AstroML is a Python module for machine learning and data mining built on
: numpy, scipy, scikit-learn, and matplotlib, and distributed under the
: 3-clause BSD license. It contains a growing library of statistical and
: machine learning routines for analyzing astronomical data in python,
: loaders for several open astronomical datasets, and a large suite of
: examples of analyzing and visualizing astronomical datasets.
Available Packages
Name : python3-astroML
Version : 0.4.1
Release : 5.fc34
Architecture : noarch
Size : 206 k
Source : python-astroML-0.4.1-5.fc34.src.rpm
Repository : fedora
Summary : Python tools for machine learning and data mining in Astronomy
URL : http://www.astroml.org/
License : BSD
Description : AstroML is a Python module for machine learning and data mining built on
: numpy, scipy, scikit-learn, and matplotlib, and distributed under the
: 3-clause BSD license. It contains a growing library of statistical and
: machine learning routines for analyzing astronomical data in python,
: loaders for several open astronomical datasets, and a large suite of
: examples of analyzing and visualizing astronomical datasets.