How to Install and Uninstall python3-bluepyopt.x86_64 Package on Fedora 34
Last updated: March 03,2025
1. Install "python3-bluepyopt.x86_64" package
Please follow the step by step instructions below to install python3-bluepyopt.x86_64 on Fedora 34
$
sudo dnf update
Copied
$
sudo dnf install
python3-bluepyopt.x86_64
Copied
2. Uninstall "python3-bluepyopt.x86_64" package
This tutorial shows how to uninstall python3-bluepyopt.x86_64 on Fedora 34:
$
sudo dnf remove
python3-bluepyopt.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-bluepyopt.x86_64 package on Fedora 34
Last metadata expiration check: 3:10:53 ago on Tue Sep 6 02:10:55 2022.
Available Packages
Name : python3-bluepyopt
Version : 1.11.15
Release : 1.fc34
Architecture : x86_64
Size : 176 k
Source : python-bluepyopt-1.11.15-1.fc34.src.rpm
Repository : updates
Summary : Bluebrain Python Optimisation Library (bluepyopt)
URL : https://github.com/BlueBrain/BluePyOpt
License : LGPLv3
Description : The Blue Brain Python Optimisation Library (BluePyOpt) is an extensible
: framework for data-driven model parameter optimisation that wraps and
: standardises several existing open-source tools. It simplifies the task of
: creating and sharing these optimisations, and the associated techniques and
: knowledge. This is achieved by abstracting the optimisation and evaluation
: tasks into various reusable and flexible discrete elements according to
: established best-practices.
Available Packages
Name : python3-bluepyopt
Version : 1.11.15
Release : 1.fc34
Architecture : x86_64
Size : 176 k
Source : python-bluepyopt-1.11.15-1.fc34.src.rpm
Repository : updates
Summary : Bluebrain Python Optimisation Library (bluepyopt)
URL : https://github.com/BlueBrain/BluePyOpt
License : LGPLv3
Description : The Blue Brain Python Optimisation Library (BluePyOpt) is an extensible
: framework for data-driven model parameter optimisation that wraps and
: standardises several existing open-source tools. It simplifies the task of
: creating and sharing these optimisations, and the associated techniques and
: knowledge. This is achieved by abstracting the optimisation and evaluation
: tasks into various reusable and flexible discrete elements according to
: established best-practices.