How to Install and Uninstall python3-numexpr.x86_64 Package on Fedora 34
Last updated: November 17,2024
1. Install "python3-numexpr.x86_64" package
This guide let you learn how to install python3-numexpr.x86_64 on Fedora 34
$
sudo dnf update
Copied
$
sudo dnf install
python3-numexpr.x86_64
Copied
2. Uninstall "python3-numexpr.x86_64" package
Please follow the guidelines below to uninstall python3-numexpr.x86_64 on Fedora 34:
$
sudo dnf remove
python3-numexpr.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-numexpr.x86_64 package on Fedora 34
Last metadata expiration check: 5:42:10 ago on Tue Sep 6 08:10:37 2022.
Available Packages
Name : python3-numexpr
Version : 2.8.1
Release : 1.fc34
Architecture : x86_64
Size : 136 k
Source : python-numexpr-2.8.1-1.fc34.src.rpm
Repository : updates
Summary : Fast numerical array expression evaluator for Python and NumPy
URL : https://github.com/pydata/numexpr
License : MIT
Description : The numexpr package evaluates multiple-operator array expressions many times
: faster than NumPy can. It accepts the expression as a string, analyzes it,
: rewrites it more efficiently, and compiles it to faster Python code on the
: fly. It’s the next best thing to writing the expression in C and compiling it
: with a specialized just-in-time (JIT) compiler, i.e. it does not require a
: compiler at runtime.
Available Packages
Name : python3-numexpr
Version : 2.8.1
Release : 1.fc34
Architecture : x86_64
Size : 136 k
Source : python-numexpr-2.8.1-1.fc34.src.rpm
Repository : updates
Summary : Fast numerical array expression evaluator for Python and NumPy
URL : https://github.com/pydata/numexpr
License : MIT
Description : The numexpr package evaluates multiple-operator array expressions many times
: faster than NumPy can. It accepts the expression as a string, analyzes it,
: rewrites it more efficiently, and compiles it to faster Python code on the
: fly. It’s the next best thing to writing the expression in C and compiling it
: with a specialized just-in-time (JIT) compiler, i.e. it does not require a
: compiler at runtime.