How to Install and Uninstall gap-pkg-cohomolo.x86_64 Package on Fedora 36
Last updated: January 13,2025
1. Install "gap-pkg-cohomolo.x86_64" package
This tutorial shows how to install gap-pkg-cohomolo.x86_64 on Fedora 36
$
sudo dnf update
Copied
$
sudo dnf install
gap-pkg-cohomolo.x86_64
Copied
2. Uninstall "gap-pkg-cohomolo.x86_64" package
Please follow the guidance below to uninstall gap-pkg-cohomolo.x86_64 on Fedora 36:
$
sudo dnf remove
gap-pkg-cohomolo.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the gap-pkg-cohomolo.x86_64 package on Fedora 36
Last metadata expiration check: 3:11:40 ago on Thu Sep 8 08:04:50 2022.
Available Packages
Name : gap-pkg-cohomolo
Version : 1.6.10
Release : 1.fc36
Architecture : x86_64
Size : 325 k
Source : gap-pkg-cohomolo-1.6.10-1.fc36.src.rpm
Repository : updates
Summary : Cohomology groups of finite groups on finite modules
URL : https://gap-packages.github.io/cohomolo/
License : GPLv2+
Description : This package may be used to perform certain cohomological calculations
: on a finite permutation group G. The following properties of G can be
: computed:
:
: 1. The p-part Mul_p of the Schur multiplier Mul of G, and a presentation
: of a covering extension of Mul_p by G, for a specified prime p;
:
: 2. The dimensions of the first and second cohomology groups of G acting
: on a finite dimensional KG-module M, where K is a field of prime
: order; and
:
: 3. Presentations of split and nonsplit extensions of M by G.
Available Packages
Name : gap-pkg-cohomolo
Version : 1.6.10
Release : 1.fc36
Architecture : x86_64
Size : 325 k
Source : gap-pkg-cohomolo-1.6.10-1.fc36.src.rpm
Repository : updates
Summary : Cohomology groups of finite groups on finite modules
URL : https://gap-packages.github.io/cohomolo/
License : GPLv2+
Description : This package may be used to perform certain cohomological calculations
: on a finite permutation group G. The following properties of G can be
: computed:
:
: 1. The p-part Mul_p of the Schur multiplier Mul of G, and a presentation
: of a covering extension of Mul_p by G, for a specified prime p;
:
: 2. The dimensions of the first and second cohomology groups of G acting
: on a finite dimensional KG-module M, where K is a field of prime
: order; and
:
: 3. Presentations of split and nonsplit extensions of M by G.