How to Install and Uninstall gap-pkg-sophus.noarch Package on Fedora 36
Last updated: November 24,2024
1. Install "gap-pkg-sophus.noarch" package
Please follow the steps below to install gap-pkg-sophus.noarch on Fedora 36
$
sudo dnf update
Copied
$
sudo dnf install
gap-pkg-sophus.noarch
Copied
2. Uninstall "gap-pkg-sophus.noarch" package
This tutorial shows how to uninstall gap-pkg-sophus.noarch on Fedora 36:
$
sudo dnf remove
gap-pkg-sophus.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the gap-pkg-sophus.noarch package on Fedora 36
Last metadata expiration check: 1:40:33 ago on Thu Sep 8 02:05:26 2022.
Available Packages
Name : gap-pkg-sophus
Version : 1.25
Release : 1.fc36
Architecture : noarch
Size : 40 k
Source : gap-pkg-sophus-1.25-1.fc36.src.rpm
Repository : fedora
Summary : Computing in nilpotent Lie algebras
URL : https://gap-packages.github.io/sophus/
License : GPLv2+
Description : The Sophus package is written to compute with nilpotent Lie algebras
: over finite prime fields. Using this package, you can compute the
: cover, the list of immediate descendants, and the automorphism group of
: such Lie algebras. You can also test if two such Lie algebras are
: isomorphic.
:
: The immediate descendant function of the package can be used to classify
: small-dimensional nilpotent Lie algebras over a given field. For
: instance, the package author obtained a classification of nilpotent Lie
: algebras with dimension at most 9 over F_2; see
: http://www.sztaki.hu/~schneider/Research/SmallLie.
Available Packages
Name : gap-pkg-sophus
Version : 1.25
Release : 1.fc36
Architecture : noarch
Size : 40 k
Source : gap-pkg-sophus-1.25-1.fc36.src.rpm
Repository : fedora
Summary : Computing in nilpotent Lie algebras
URL : https://gap-packages.github.io/sophus/
License : GPLv2+
Description : The Sophus package is written to compute with nilpotent Lie algebras
: over finite prime fields. Using this package, you can compute the
: cover, the list of immediate descendants, and the automorphism group of
: such Lie algebras. You can also test if two such Lie algebras are
: isomorphic.
:
: The immediate descendant function of the package can be used to classify
: small-dimensional nilpotent Lie algebras over a given field. For
: instance, the package author obtained a classification of nilpotent Lie
: algebras with dimension at most 9 over F_2; see
: http://www.sztaki.hu/~schneider/Research/SmallLie.