How to Install and Uninstall ocaml-tyxml.x86_64 Package on Fedora 36
Last updated: November 29,2024
1. Install "ocaml-tyxml.x86_64" package
This tutorial shows how to install ocaml-tyxml.x86_64 on Fedora 36
$
sudo dnf update
Copied
$
sudo dnf install
ocaml-tyxml.x86_64
Copied
2. Uninstall "ocaml-tyxml.x86_64" package
In this section, we are going to explain the necessary steps to uninstall ocaml-tyxml.x86_64 on Fedora 36:
$
sudo dnf remove
ocaml-tyxml.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the ocaml-tyxml.x86_64 package on Fedora 36
Last metadata expiration check: 4:44:08 ago on Thu Sep 8 02:05:26 2022.
Available Packages
Name : ocaml-tyxml
Version : 4.5.0
Release : 10.fc36
Architecture : x86_64
Size : 1.2 M
Source : ocaml-tyxml-4.5.0-10.fc36.src.rpm
Repository : fedora
Summary : Build valid HTML and SVG documents
URL : https://ocsigen.org/tyxml/
License : LGPLv2 with exceptions
Description : TyXML provides a set of convenient combinators that uses the OCaml type
: system to ensure the validity of the generated documents. TyXML can be
: used with any representation of HTML and SVG: the textual one, provided
: directly by this package, or DOM trees (`js_of_ocaml-tyxml`), virtual DOM
: (`virtual-dom`) and reactive or replicated trees (`eliom`). You can also
: create your own representation and use it to instantiate a new set of
: combinators.
Available Packages
Name : ocaml-tyxml
Version : 4.5.0
Release : 10.fc36
Architecture : x86_64
Size : 1.2 M
Source : ocaml-tyxml-4.5.0-10.fc36.src.rpm
Repository : fedora
Summary : Build valid HTML and SVG documents
URL : https://ocsigen.org/tyxml/
License : LGPLv2 with exceptions
Description : TyXML provides a set of convenient combinators that uses the OCaml type
: system to ensure the validity of the generated documents. TyXML can be
: used with any representation of HTML and SVG: the textual one, provided
: directly by this package, or DOM trees (`js_of_ocaml-tyxml`), virtual DOM
: (`virtual-dom`) and reactive or replicated trees (`eliom`). You can also
: create your own representation and use it to instantiate a new set of
: combinators.