How to Install and Uninstall perl-Crypt-Primes.noarch Package on Fedora 36
Last updated: January 11,2025
1. Install "perl-Crypt-Primes.noarch" package
Learn how to install perl-Crypt-Primes.noarch on Fedora 36
$
sudo dnf update
Copied
$
sudo dnf install
perl-Crypt-Primes.noarch
Copied
2. Uninstall "perl-Crypt-Primes.noarch" package
Here is a brief guide to show you how to uninstall perl-Crypt-Primes.noarch on Fedora 36:
$
sudo dnf remove
perl-Crypt-Primes.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the perl-Crypt-Primes.noarch package on Fedora 36
Last metadata expiration check: 4:25:15 ago on Thu Sep 8 02:05:26 2022.
Available Packages
Name : perl-Crypt-Primes
Version : 0.50
Release : 45.fc36
Architecture : noarch
Size : 126 k
Source : perl-Crypt-Primes-0.50-45.fc36.src.rpm
Repository : fedora
Summary : Provable prime number generator for cryptographic applications
URL : https://metacpan.org/release/Crypt-Primes
License : GPL+ or Artistic
Description : This module implements Ueli Maurer's algorithm for generating large provable
: primes and secure parameters for public-key cryptosystems. The generated primes
: are almost uniformly distributed over the set of primes of the specified
: bitsize and expected time for generation is less than the time required for
: generating a pseudo-prime of the same size with Miller-Rabin tests. Detailed
: description and running time analysis of the algorithm can be found in Maurer's
: paper, "Fast Generation of Prime Numbers and Secure Public-Key Cryptographic
: Parameters" (1994).
Available Packages
Name : perl-Crypt-Primes
Version : 0.50
Release : 45.fc36
Architecture : noarch
Size : 126 k
Source : perl-Crypt-Primes-0.50-45.fc36.src.rpm
Repository : fedora
Summary : Provable prime number generator for cryptographic applications
URL : https://metacpan.org/release/Crypt-Primes
License : GPL+ or Artistic
Description : This module implements Ueli Maurer's algorithm for generating large provable
: primes and secure parameters for public-key cryptosystems. The generated primes
: are almost uniformly distributed over the set of primes of the specified
: bitsize and expected time for generation is less than the time required for
: generating a pseudo-prime of the same size with Miller-Rabin tests. Detailed
: description and running time analysis of the algorithm can be found in Maurer's
: paper, "Fast Generation of Prime Numbers and Secure Public-Key Cryptographic
: Parameters" (1994).