How to Install and Uninstall python3-bluepyopt.x86_64 Package on Fedora 36
Last updated: November 26,2024
1. Install "python3-bluepyopt.x86_64" package
Please follow the guidelines below to install python3-bluepyopt.x86_64 on Fedora 36
$
sudo dnf update
Copied
$
sudo dnf install
python3-bluepyopt.x86_64
Copied
2. Uninstall "python3-bluepyopt.x86_64" package
This is a short guide on how to uninstall python3-bluepyopt.x86_64 on Fedora 36:
$
sudo dnf remove
python3-bluepyopt.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-bluepyopt.x86_64 package on Fedora 36
Last metadata expiration check: 0:08:08 ago on Thu Sep 8 14:04:51 2022.
Available Packages
Name : python3-bluepyopt
Version : 1.11.15
Release : 2.fc36
Architecture : x86_64
Size : 178 k
Source : python-bluepyopt-1.11.15-2.fc36.src.rpm
Repository : fedora
Summary : Bluebrain Python Optimisation Library (bluepyopt)
URL : https://github.com/BlueBrain/BluePyOpt
License : LGPLv3
Description : The Blue Brain Python Optimisation Library (BluePyOpt) is an extensible
: framework for data-driven model parameter optimisation that wraps and
: standardises several existing open-source tools. It simplifies the task of
: creating and sharing these optimisations, and the associated techniques and
: knowledge. This is achieved by abstracting the optimisation and evaluation
: tasks into various reusable and flexible discrete elements according to
: established best-practices.
Available Packages
Name : python3-bluepyopt
Version : 1.11.15
Release : 2.fc36
Architecture : x86_64
Size : 178 k
Source : python-bluepyopt-1.11.15-2.fc36.src.rpm
Repository : fedora
Summary : Bluebrain Python Optimisation Library (bluepyopt)
URL : https://github.com/BlueBrain/BluePyOpt
License : LGPLv3
Description : The Blue Brain Python Optimisation Library (BluePyOpt) is an extensible
: framework for data-driven model parameter optimisation that wraps and
: standardises several existing open-source tools. It simplifies the task of
: creating and sharing these optimisations, and the associated techniques and
: knowledge. This is achieved by abstracting the optimisation and evaluation
: tasks into various reusable and flexible discrete elements according to
: established best-practices.