How to Install and Uninstall ocaml-tyxml.i686 Package on Fedora 38
Last updated: February 03,2025
1. Install "ocaml-tyxml.i686" package
Please follow the guidance below to install ocaml-tyxml.i686 on Fedora 38
$
sudo dnf update
Copied
$
sudo dnf install
ocaml-tyxml.i686
Copied
2. Uninstall "ocaml-tyxml.i686" package
This guide covers the steps necessary to uninstall ocaml-tyxml.i686 on Fedora 38:
$
sudo dnf remove
ocaml-tyxml.i686
Copied
$
sudo dnf autoremove
Copied
3. Information about the ocaml-tyxml.i686 package on Fedora 38
Last metadata expiration check: 3:00:48 ago on Sat Mar 16 16:59:57 2024.
Available Packages
Name : ocaml-tyxml
Version : 4.5.0
Release : 16.fc38
Architecture : i686
Size : 1.1 M
Source : ocaml-tyxml-4.5.0-16.fc38.src.rpm
Repository : fedora
Summary : Build valid HTML and SVG documents
URL : https://ocsigen.org/tyxml/
License : LGPL-2.1-only WITH OCaml-LGPL-linking-exception
Description : TyXML provides a set of convenient combinators that uses the OCaml type
: system to ensure the validity of the generated documents. TyXML can be
: used with any representation of HTML and SVG: the textual one, provided
: directly by this package, or DOM trees (`js_of_ocaml-tyxml`), virtual DOM
: (`virtual-dom`) and reactive or replicated trees (`eliom`). You can also
: create your own representation and use it to instantiate a new set of
: combinators.
Available Packages
Name : ocaml-tyxml
Version : 4.5.0
Release : 16.fc38
Architecture : i686
Size : 1.1 M
Source : ocaml-tyxml-4.5.0-16.fc38.src.rpm
Repository : fedora
Summary : Build valid HTML and SVG documents
URL : https://ocsigen.org/tyxml/
License : LGPL-2.1-only WITH OCaml-LGPL-linking-exception
Description : TyXML provides a set of convenient combinators that uses the OCaml type
: system to ensure the validity of the generated documents. TyXML can be
: used with any representation of HTML and SVG: the textual one, provided
: directly by this package, or DOM trees (`js_of_ocaml-tyxml`), virtual DOM
: (`virtual-dom`) and reactive or replicated trees (`eliom`). You can also
: create your own representation and use it to instantiate a new set of
: combinators.