How to Install and Uninstall python3-fiat.noarch Package on Fedora 38
Last updated: November 29,2024
1. Install "python3-fiat.noarch" package
This is a short guide on how to install python3-fiat.noarch on Fedora 38
$
sudo dnf update
Copied
$
sudo dnf install
python3-fiat.noarch
Copied
2. Uninstall "python3-fiat.noarch" package
In this section, we are going to explain the necessary steps to uninstall python3-fiat.noarch on Fedora 38:
$
sudo dnf remove
python3-fiat.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-fiat.noarch package on Fedora 38
Last metadata expiration check: 3:51:37 ago on Sat Mar 16 16:59:57 2024.
Available Packages
Name : python3-fiat
Version : 2019.1.0
Release : 12.fc38
Architecture : noarch
Size : 228 k
Source : python-fiat-2019.1.0-12.fc38.src.rpm
Repository : fedora
Summary : Generator of arbitrary order instances of Lagrange elements on lines, triangles, and tetrahedra
URL : https://bitbucket.org/fenics-project/fiat
License : LGPLv3+
Description : The FInite element Automatic Tabulator FIAT supports generation of
: arbitrary order instances of the Lagrange elements on lines,
: triangles, and tetrahedra. It is also capable of generating arbitrary
: order instances of Jacobi-type quadrature rules on the same element
: shapes. Further, H(div) and H(curl) conforming finite element spaces
: such as the families of Raviart-Thomas, Brezzi-Douglas-Marini and
: Nedelec are supported on triangles and tetrahedra. Upcoming versions
: will also support Hermite and nonconforming elements.
:
: FIAT is part of the FEniCS Project.
Available Packages
Name : python3-fiat
Version : 2019.1.0
Release : 12.fc38
Architecture : noarch
Size : 228 k
Source : python-fiat-2019.1.0-12.fc38.src.rpm
Repository : fedora
Summary : Generator of arbitrary order instances of Lagrange elements on lines, triangles, and tetrahedra
URL : https://bitbucket.org/fenics-project/fiat
License : LGPLv3+
Description : The FInite element Automatic Tabulator FIAT supports generation of
: arbitrary order instances of the Lagrange elements on lines,
: triangles, and tetrahedra. It is also capable of generating arbitrary
: order instances of Jacobi-type quadrature rules on the same element
: shapes. Further, H(div) and H(curl) conforming finite element spaces
: such as the families of Raviart-Thomas, Brezzi-Douglas-Marini and
: Nedelec are supported on triangles and tetrahedra. Upcoming versions
: will also support Hermite and nonconforming elements.
:
: FIAT is part of the FEniCS Project.