How to Install and Uninstall python3-munkres.noarch Package on Fedora 38
Last updated: November 02,2024
1. Install "python3-munkres.noarch" package
Please follow the instructions below to install python3-munkres.noarch on Fedora 38
$
sudo dnf update
Copied
$
sudo dnf install
python3-munkres.noarch
Copied
2. Uninstall "python3-munkres.noarch" package
Here is a brief guide to show you how to uninstall python3-munkres.noarch on Fedora 38:
$
sudo dnf remove
python3-munkres.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-munkres.noarch package on Fedora 38
Last metadata expiration check: 5:28:09 ago on Sat Mar 16 22:59:57 2024.
Available Packages
Name : python3-munkres
Version : 1.1.2
Release : 14.fc38
Architecture : noarch
Size : 26 k
Source : python-munkres-1.1.2-14.fc38.src.rpm
Repository : fedora
Summary : A Munkres algorithm for Python
URL : http://software.clapper.org/munkres/
License : ASL 2.0
Description : The Munkres module provides an implementation of the Munkres algorithm (also
: called the Hungarian algorithm or the Kuhn-Munkres algorithm). The algorithm
: models an assignment problem as an NxM cost matrix, where each element
: represents the cost of assigning the ith worker to the jth job, and it figures
: out the least-cost solution, choosing a single item from each row and column in
: the matrix, such that no row and no column are used more than once.
Available Packages
Name : python3-munkres
Version : 1.1.2
Release : 14.fc38
Architecture : noarch
Size : 26 k
Source : python-munkres-1.1.2-14.fc38.src.rpm
Repository : fedora
Summary : A Munkres algorithm for Python
URL : http://software.clapper.org/munkres/
License : ASL 2.0
Description : The Munkres module provides an implementation of the Munkres algorithm (also
: called the Hungarian algorithm or the Kuhn-Munkres algorithm). The algorithm
: models an assignment problem as an NxM cost matrix, where each element
: represents the cost of assigning the ith worker to the jth job, and it figures
: out the least-cost solution, choosing a single item from each row and column in
: the matrix, such that no row and no column are used more than once.