How to Install and Uninstall R-mnormt.x86_64 Package on Fedora 38
Last updated: November 29,2024
1. Install "R-mnormt.x86_64" package
This guide covers the steps necessary to install R-mnormt.x86_64 on Fedora 38
$
sudo dnf update
Copied
$
sudo dnf install
R-mnormt.x86_64
Copied
2. Uninstall "R-mnormt.x86_64" package
Please follow the guidelines below to uninstall R-mnormt.x86_64 on Fedora 38:
$
sudo dnf remove
R-mnormt.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the R-mnormt.x86_64 package on Fedora 38
Last metadata expiration check: 0:23:28 ago on Sun Mar 17 04:59:58 2024.
Available Packages
Name : R-mnormt
Version : 2.1.0
Release : 3.fc38
Architecture : x86_64
Size : 205 k
Source : R-mnormt-2.1.0-3.fc38.src.rpm
Repository : updates
Summary : The Multivariate Normal and t Distributions
URL : https://CRAN.R-project.org/package=mnormt
License : GPLv2 or GPLv3
Description : Functions are provided for computing the density and the distribution function
: of d-dimensional normal and "t" random variables, possibly truncated (on one
: side or two sides), and for generating random vectors sampled from these
: distributions, except sampling from the truncated "t". Moments of arbitrary
: order of a multivariate truncated normal are computed, and converted to
: cumulants up to order 4. Probabilities are computed via non-Monte Carlo
: methods; different routines are used in the case d=1, d=2, d=3, d>3, if d
: denotes the dimensionality.
Available Packages
Name : R-mnormt
Version : 2.1.0
Release : 3.fc38
Architecture : x86_64
Size : 205 k
Source : R-mnormt-2.1.0-3.fc38.src.rpm
Repository : updates
Summary : The Multivariate Normal and t Distributions
URL : https://CRAN.R-project.org/package=mnormt
License : GPLv2 or GPLv3
Description : Functions are provided for computing the density and the distribution function
: of d-dimensional normal and "t" random variables, possibly truncated (on one
: side or two sides), and for generating random vectors sampled from these
: distributions, except sampling from the truncated "t". Moments of arbitrary
: order of a multivariate truncated normal are computed, and converted to
: cumulants up to order 4. Probabilities are computed via non-Monte Carlo
: methods; different routines are used in the case d=1, d=2, d=3, d>3, if d
: denotes the dimensionality.