How to Install and Uninstall azove.x86_64 Package on Fedora 39
Last updated: January 18,2025
1. Install "azove.x86_64" package
In this section, we are going to explain the necessary steps to install azove.x86_64 on Fedora 39
$
sudo dnf update
Copied
$
sudo dnf install
azove.x86_64
Copied
2. Uninstall "azove.x86_64" package
Please follow the steps below to uninstall azove.x86_64 on Fedora 39:
$
sudo dnf remove
azove.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the azove.x86_64 package on Fedora 39
Last metadata expiration check: 1:57:44 ago on Thu Mar 7 11:44:58 2024.
Available Packages
Name : azove
Version : 2.0
Release : 26.fc39
Architecture : x86_64
Size : 39 k
Source : azove-2.0-26.fc39.src.rpm
Repository : fedora
Summary : Another Zero-One Vertex Enumeration tool
URL : https://people.mpi-inf.mpg.de/alumni/d1/2019/behle/azove.html
License : GPL-2.0-or-later
Description : Azove is a tool designed for counting (without explicit enumeration) and
: enumeration of 0/1 vertices. Given a polytope by a linear relaxation or
: facet description P = {x | Ax <= b}, all 0/1 points lying in P can be
: counted or enumerated. This is done by intersecting the polytope P with
: the unit-hypercube [0,1] d. The integral vertices (no fractional ones)
: of this intersection will be enumerated. If P is a 0/1 polytope, azove
: solves the vertex enumeration problem. In fact it can also solve the
: 0/1 knapsack problem and the 0/1 subset sum problem.
Available Packages
Name : azove
Version : 2.0
Release : 26.fc39
Architecture : x86_64
Size : 39 k
Source : azove-2.0-26.fc39.src.rpm
Repository : fedora
Summary : Another Zero-One Vertex Enumeration tool
URL : https://people.mpi-inf.mpg.de/alumni/d1/2019/behle/azove.html
License : GPL-2.0-or-later
Description : Azove is a tool designed for counting (without explicit enumeration) and
: enumeration of 0/1 vertices. Given a polytope by a linear relaxation or
: facet description P = {x | Ax <= b}, all 0/1 points lying in P can be
: counted or enumerated. This is done by intersecting the polytope P with
: the unit-hypercube [0,1] d. The integral vertices (no fractional ones)
: of this intersection will be enumerated. If P is a 0/1 polytope, azove
: solves the vertex enumeration problem. In fact it can also solve the
: 0/1 knapsack problem and the 0/1 subset sum problem.