How to Install and Uninstall python3-munkres.noarch Package on Fedora 39
Last updated: January 16,2025
1. Install "python3-munkres.noarch" package
This is a short guide on how to install python3-munkres.noarch on Fedora 39
$
sudo dnf update
Copied
$
sudo dnf install
python3-munkres.noarch
Copied
2. Uninstall "python3-munkres.noarch" package
This guide let you learn how to uninstall python3-munkres.noarch on Fedora 39:
$
sudo dnf remove
python3-munkres.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-munkres.noarch package on Fedora 39
Last metadata expiration check: 4:18:39 ago on Thu Mar 7 17:44:52 2024.
Available Packages
Name : python3-munkres
Version : 1.1.2
Release : 17.fc39
Architecture : noarch
Size : 25 k
Source : python-munkres-1.1.2-17.fc39.src.rpm
Repository : fedora
Summary : A Munkres algorithm for Python
URL : http://software.clapper.org/munkres/
License : Apache-2.0
Description : The Munkres module provides an implementation of the Munkres algorithm (also
: called the Hungarian algorithm or the Kuhn-Munkres algorithm). The algorithm
: models an assignment problem as an NxM cost matrix, where each element
: represents the cost of assigning the ith worker to the jth job, and it figures
: out the least-cost solution, choosing a single item from each row and column in
: the matrix, such that no row and no column are used more than once.
Available Packages
Name : python3-munkres
Version : 1.1.2
Release : 17.fc39
Architecture : noarch
Size : 25 k
Source : python-munkres-1.1.2-17.fc39.src.rpm
Repository : fedora
Summary : A Munkres algorithm for Python
URL : http://software.clapper.org/munkres/
License : Apache-2.0
Description : The Munkres module provides an implementation of the Munkres algorithm (also
: called the Hungarian algorithm or the Kuhn-Munkres algorithm). The algorithm
: models an assignment problem as an NxM cost matrix, where each element
: represents the cost of assigning the ith worker to the jth job, and it figures
: out the least-cost solution, choosing a single item from each row and column in
: the matrix, such that no row and no column are used more than once.