How to Install and Uninstall factory.x86_64 Package on Fedora 35
Last updated: November 16,2024
1. Install "factory.x86_64" package
Please follow the guidance below to install factory.x86_64 on Fedora 35
$
sudo dnf update
Copied
$
sudo dnf install
factory.x86_64
Copied
2. Uninstall "factory.x86_64" package
Please follow the guidance below to uninstall factory.x86_64 on Fedora 35:
$
sudo dnf remove
factory.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the factory.x86_64 package on Fedora 35
Last metadata expiration check: 0:28:14 ago on Wed Sep 7 14:25:02 2022.
Available Packages
Name : factory
Version : 4.2.0p3
Release : 1.fc35
Architecture : x86_64
Size : 836 k
Source : Singular-4.2.0p3-1.fc35.src.rpm
Repository : fedora
Summary : C++ class library for multivariate polynomial data
URL : https://www.singular.uni-kl.de/
License : GPLv2 or GPLv3
Description : Factory is a C++ class library that implements a recursive
: representation of multivariate polynomial data. It handles sparse
: multivariate polynomials over different coefficient domains, such as Z,
: Q and GF(q), as well as algebraic extensions over Q and GF(q) in an
: efficient way. Factory includes algorithms for computing univariate and
: multivariate gcds, resultants, chinese remainders, and algorithms to
: factorize multivariate polynomials and to compute the absolute
: factorization of multivariate polynomials with integer coefficients.
Available Packages
Name : factory
Version : 4.2.0p3
Release : 1.fc35
Architecture : x86_64
Size : 836 k
Source : Singular-4.2.0p3-1.fc35.src.rpm
Repository : fedora
Summary : C++ class library for multivariate polynomial data
URL : https://www.singular.uni-kl.de/
License : GPLv2 or GPLv3
Description : Factory is a C++ class library that implements a recursive
: representation of multivariate polynomial data. It handles sparse
: multivariate polynomials over different coefficient domains, such as Z,
: Q and GF(q), as well as algebraic extensions over Q and GF(q) in an
: efficient way. Factory includes algorithms for computing univariate and
: multivariate gcds, resultants, chinese remainders, and algorithms to
: factorize multivariate polynomials and to compute the absolute
: factorization of multivariate polynomials with integer coefficients.