How to Install and Uninstall isl.i686 Package on Fedora 35
Last updated: November 15,2024
1. Install "isl.i686" package
Please follow the guidelines below to install isl.i686 on Fedora 35
$
sudo dnf update
Copied
$
sudo dnf install
isl.i686
Copied
2. Uninstall "isl.i686" package
This guide let you learn how to uninstall isl.i686 on Fedora 35:
$
sudo dnf remove
isl.i686
Copied
$
sudo dnf autoremove
Copied
3. Information about the isl.i686 package on Fedora 35
Last metadata expiration check: 1:28:57 ago on Wed Sep 7 14:25:02 2022.
Available Packages
Name : isl
Version : 0.16.1
Release : 14.fc35
Architecture : i686
Size : 982 k
Source : isl-0.16.1-14.fc35.src.rpm
Repository : fedora
Summary : Integer point manipulation library
URL : http://isl.gforge.inria.fr/
License : MIT
Description : isl is a library for manipulating sets and relations of integer points
: bounded by linear constraints. Supported operations on sets include
: intersection, union, set difference, emptiness check, convex hull,
: (integer) affine hull, integer projection, computing the lexicographic
: minimum using parametric integer programming, coalescing and parametric
: vertex enumeration. It also includes an ILP solver based on generalized
: basis reduction, transitive closures on maps (which may encode infinite
: graphs), dependence analysis and bounds on piecewise step-polynomials.
Available Packages
Name : isl
Version : 0.16.1
Release : 14.fc35
Architecture : i686
Size : 982 k
Source : isl-0.16.1-14.fc35.src.rpm
Repository : fedora
Summary : Integer point manipulation library
URL : http://isl.gforge.inria.fr/
License : MIT
Description : isl is a library for manipulating sets and relations of integer points
: bounded by linear constraints. Supported operations on sets include
: intersection, union, set difference, emptiness check, convex hull,
: (integer) affine hull, integer projection, computing the lexicographic
: minimum using parametric integer programming, coalescing and parametric
: vertex enumeration. It also includes an ILP solver based on generalized
: basis reduction, transitive closures on maps (which may encode infinite
: graphs), dependence analysis and bounds on piecewise step-polynomials.