How to Install and Uninstall python3-fiat.noarch Package on Fedora 35
Last updated: November 15,2024
1. Install "python3-fiat.noarch" package
In this section, we are going to explain the necessary steps to install python3-fiat.noarch on Fedora 35
$
sudo dnf update
Copied
$
sudo dnf install
python3-fiat.noarch
Copied
2. Uninstall "python3-fiat.noarch" package
Here is a brief guide to show you how to uninstall python3-fiat.noarch on Fedora 35:
$
sudo dnf remove
python3-fiat.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-fiat.noarch package on Fedora 35
Last metadata expiration check: 5:14:15 ago on Wed Sep 7 08:25:01 2022.
Available Packages
Name : python3-fiat
Version : 2019.1.0
Release : 8.fc35
Architecture : noarch
Size : 158 k
Source : python-fiat-2019.1.0-8.fc35.src.rpm
Repository : fedora
Summary : Generator of arbitrary order instances of Lagrange elements on lines, triangles, and tetrahedra
URL : https://bitbucket.org/fenics-project/fiat
License : LGPLv3+
Description : The FInite element Automatic Tabulator FIAT supports generation of
: arbitrary order instances of the Lagrange elements on lines,
: triangles, and tetrahedra. It is also capable of generating arbitrary
: order instances of Jacobi-type quadrature rules on the same element
: shapes. Further, H(div) and H(curl) conforming finite element spaces
: such as the families of Raviart-Thomas, Brezzi-Douglas-Marini and
: Nedelec are supported on triangles and tetrahedra. Upcoming versions
: will also support Hermite and nonconforming elements.
:
: FIAT is part of the FEniCS Project.
Available Packages
Name : python3-fiat
Version : 2019.1.0
Release : 8.fc35
Architecture : noarch
Size : 158 k
Source : python-fiat-2019.1.0-8.fc35.src.rpm
Repository : fedora
Summary : Generator of arbitrary order instances of Lagrange elements on lines, triangles, and tetrahedra
URL : https://bitbucket.org/fenics-project/fiat
License : LGPLv3+
Description : The FInite element Automatic Tabulator FIAT supports generation of
: arbitrary order instances of the Lagrange elements on lines,
: triangles, and tetrahedra. It is also capable of generating arbitrary
: order instances of Jacobi-type quadrature rules on the same element
: shapes. Further, H(div) and H(curl) conforming finite element spaces
: such as the families of Raviart-Thomas, Brezzi-Douglas-Marini and
: Nedelec are supported on triangles and tetrahedra. Upcoming versions
: will also support Hermite and nonconforming elements.
:
: FIAT is part of the FEniCS Project.