How to Install and Uninstall R-matrixStats.x86_64 Package on Fedora 35
Last updated: January 16,2025
1. Install "R-matrixStats.x86_64" package
This is a short guide on how to install R-matrixStats.x86_64 on Fedora 35
$
sudo dnf update
Copied
$
sudo dnf install
R-matrixStats.x86_64
Copied
2. Uninstall "R-matrixStats.x86_64" package
Please follow the step by step instructions below to uninstall R-matrixStats.x86_64 on Fedora 35:
$
sudo dnf remove
R-matrixStats.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the R-matrixStats.x86_64 package on Fedora 35
Last metadata expiration check: 2:37:18 ago on Wed Sep 7 08:25:01 2022.
Available Packages
Name : R-matrixStats
Version : 0.59.0
Release : 2.fc35
Architecture : x86_64
Size : 710 k
Source : R-matrixStats-0.59.0-2.fc35.src.rpm
Repository : fedora
Summary : Functions that Apply to Rows and Columns of Matrices (and to Vectors)
URL : http://cran.r-project.org/web/packages/matrixStats/index.html
License : Artistic 2.0
Description : High-performing functions operating on rows and columns of matrices, e.g.
: col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized
: per data type and for subsetted calculations such that both memory usage and
: processing time is minimized. There are also optimized vector-based methods,
: e.g. binMeans(), madDiff() and weightedMedian().
Available Packages
Name : R-matrixStats
Version : 0.59.0
Release : 2.fc35
Architecture : x86_64
Size : 710 k
Source : R-matrixStats-0.59.0-2.fc35.src.rpm
Repository : fedora
Summary : Functions that Apply to Rows and Columns of Matrices (and to Vectors)
URL : http://cran.r-project.org/web/packages/matrixStats/index.html
License : Artistic 2.0
Description : High-performing functions operating on rows and columns of matrices, e.g.
: col / rowMedians(), col / rowRanks(), and col / rowSds(). Functions optimized
: per data type and for subsetted calculations such that both memory usage and
: processing time is minimized. There are also optimized vector-based methods,
: e.g. binMeans(), madDiff() and weightedMedian().