How to Install and Uninstall texlive-bezierplot.noarch Package on Fedora 35
Last updated: November 29,2024
1. Install "texlive-bezierplot.noarch" package
This guide covers the steps necessary to install texlive-bezierplot.noarch on Fedora 35
$
sudo dnf update
Copied
$
sudo dnf install
texlive-bezierplot.noarch
Copied
2. Uninstall "texlive-bezierplot.noarch" package
Learn how to uninstall texlive-bezierplot.noarch on Fedora 35:
$
sudo dnf remove
texlive-bezierplot.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the texlive-bezierplot.noarch package on Fedora 35
Last metadata expiration check: 1:50:03 ago on Wed Sep 7 08:25:01 2022.
Available Packages
Name : texlive-bezierplot
Epoch : 9
Version : svn51398
Release : 48.fc35
Architecture : noarch
Size : 274 k
Source : texlive-2021-48.fc35.src.rpm
Repository : updates
Summary : Approximate smooth function graphs with cubic bezier splines for use with TikZ or MetaPost
URL : http://tug.org/texlive/
License : LPPL
Description : This package consists of a Lua program as well as a (Lua)LaTeX
: .sty file. Given a smooth function, bezierplot returns a smooth
: bezier path written in TikZ notation (which also matches
: MetaPost) that approximates the graph of the function. For
: polynomial functions of degree [?] 3 and their inverses the
: approximation is exact (up to numeric precision). bezierplot
: also finds special points such as extreme points and inflection
: points and reduces the number of used points.
Available Packages
Name : texlive-bezierplot
Epoch : 9
Version : svn51398
Release : 48.fc35
Architecture : noarch
Size : 274 k
Source : texlive-2021-48.fc35.src.rpm
Repository : updates
Summary : Approximate smooth function graphs with cubic bezier splines for use with TikZ or MetaPost
URL : http://tug.org/texlive/
License : LPPL
Description : This package consists of a Lua program as well as a (Lua)LaTeX
: .sty file. Given a smooth function, bezierplot returns a smooth
: bezier path written in TikZ notation (which also matches
: MetaPost) that approximates the graph of the function. For
: polynomial functions of degree [?] 3 and their inverses the
: approximation is exact (up to numeric precision). bezierplot
: also finds special points such as extreme points and inflection
: points and reduces the number of used points.