How to Install and Uninstall libgtsam-doc Package on Kali Linux
Last updated: November 23,2024
1. Install "libgtsam-doc" package
This guide let you learn how to install libgtsam-doc on Kali Linux
$
sudo apt update
Copied
$
sudo apt install
libgtsam-doc
Copied
2. Uninstall "libgtsam-doc" package
Please follow the guidelines below to uninstall libgtsam-doc on Kali Linux:
$
sudo apt remove
libgtsam-doc
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the libgtsam-doc package on Kali Linux
Package: libgtsam-doc
Source: gtsam
Version: 4.2.0+dfsg-1
Installed-Size: 63791
Maintainer: Debian Science Maintainers
Architecture: all
Depends: libjs-mathjax
Size: 14600480
SHA256: 88458b90aa9f6dda77df4d3999823df8acdc42f278436f2c0cd894a7175bdaec
SHA1: d6a83f9e0bd17b017f63f204ed18f31081bbfb2f
MD5sum: 78008827c2697a2e4be7ecd537145c3b
Description: Factor graphs for sensor fusion in robotics
GTSAM is a C++ library that implements sensor fusion for robotics and computer
vision applications, including SLAM (Simultaneous Localization and Mapping), VO
(Visual Odometry), and SFM (Structure from Motion). It uses factor graphs and
Bayes networks as the underlying computing paradigm rather than sparse matrices
to optimize for the most probable configuration or an optimal plan. Coupled
with a capable sensor front-end (not provided here), GTSAM powers many
impressive autonomous systems, in both academia and industry.
.
Documentation
Description-md5:
Homepage: http://www.gtsam.org
Section: doc
Priority: optional
Filename: pool/main/g/gtsam/libgtsam-doc_4.2.0+dfsg-1_all.deb
Source: gtsam
Version: 4.2.0+dfsg-1
Installed-Size: 63791
Maintainer: Debian Science Maintainers
Architecture: all
Depends: libjs-mathjax
Size: 14600480
SHA256: 88458b90aa9f6dda77df4d3999823df8acdc42f278436f2c0cd894a7175bdaec
SHA1: d6a83f9e0bd17b017f63f204ed18f31081bbfb2f
MD5sum: 78008827c2697a2e4be7ecd537145c3b
Description: Factor graphs for sensor fusion in robotics
GTSAM is a C++ library that implements sensor fusion for robotics and computer
vision applications, including SLAM (Simultaneous Localization and Mapping), VO
(Visual Odometry), and SFM (Structure from Motion). It uses factor graphs and
Bayes networks as the underlying computing paradigm rather than sparse matrices
to optimize for the most probable configuration or an optimal plan. Coupled
with a capable sensor front-end (not provided here), GTSAM powers many
impressive autonomous systems, in both academia and industry.
.
Documentation
Description-md5:
Homepage: http://www.gtsam.org
Section: doc
Priority: optional
Filename: pool/main/g/gtsam/libgtsam-doc_4.2.0+dfsg-1_all.deb