How to Install and Uninstall macs Package on Kali Linux
Last updated: December 27,2024
1. Install "macs" package
Please follow the step by step instructions below to install macs on Kali Linux
$
sudo apt update
Copied
$
sudo apt install
macs
Copied
2. Uninstall "macs" package
Learn how to uninstall macs on Kali Linux:
$
sudo apt remove
macs
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the macs package on Kali Linux
Package: macs
Version: 3.0.1-2
Installed-Size: 14386
Maintainer: Debian Med Packaging Team
Architecture: amd64
Depends: python3-numpy (>= 1:1.22.0), python3-numpy-abi9, python3 (<< 3.13), python3 (>= 3.11~), python3-cykhash, python3-hmmlearn, python3-scipy, python3-sklearn, python3:any, libc6 (>= 2.34), zlib1g (>= 1:1.1.4)
Size: 4531332
SHA256: b3ae5f05c0994ec8de6ba1f281dacc02efee5ce222e7e2d5563054be57453e47
SHA1: 6ace54ac19d63c43018fab0596c30fd3a88fd828
MD5sum: a3ab04d563307326165a69f4914cfcf8
Description: Model-based Analysis of ChIP-Seq on short reads sequencers
MACS empirically models the length of the sequenced ChIP fragments, which
tends to be shorter than sonication or library construction size estimates,
and uses it to improve the spatial resolution of predicted binding sites.
MACS also uses a dynamic Poisson distribution to effectively capture local
biases in the genome sequence, allowing for more sensitive and robust
prediction. MACS compares favorably to existing ChIP-Seq peak-finding
algorithms, is publicly available open source, and can be used for ChIP-Seq
with or without control samples.
Description-md5:
Homepage: https://github.com/taoliu/MACS/
Section: science
Priority: optional
Filename: pool/main/m/macs/macs_3.0.1-2_amd64.deb
Version: 3.0.1-2
Installed-Size: 14386
Maintainer: Debian Med Packaging Team
Architecture: amd64
Depends: python3-numpy (>= 1:1.22.0), python3-numpy-abi9, python3 (<< 3.13), python3 (>= 3.11~), python3-cykhash, python3-hmmlearn, python3-scipy, python3-sklearn, python3:any, libc6 (>= 2.34), zlib1g (>= 1:1.1.4)
Size: 4531332
SHA256: b3ae5f05c0994ec8de6ba1f281dacc02efee5ce222e7e2d5563054be57453e47
SHA1: 6ace54ac19d63c43018fab0596c30fd3a88fd828
MD5sum: a3ab04d563307326165a69f4914cfcf8
Description: Model-based Analysis of ChIP-Seq on short reads sequencers
MACS empirically models the length of the sequenced ChIP fragments, which
tends to be shorter than sonication or library construction size estimates,
and uses it to improve the spatial resolution of predicted binding sites.
MACS also uses a dynamic Poisson distribution to effectively capture local
biases in the genome sequence, allowing for more sensitive and robust
prediction. MACS compares favorably to existing ChIP-Seq peak-finding
algorithms, is publicly available open source, and can be used for ChIP-Seq
with or without control samples.
Description-md5:
Homepage: https://github.com/taoliu/MACS/
Section: science
Priority: optional
Filename: pool/main/m/macs/macs_3.0.1-2_amd64.deb