How to Install and Uninstall python3-faiss Package on Kali Linux
Last updated: November 22,2024
Deprecated! Installation of this package may no longer be supported.
1. Install "python3-faiss" package
This tutorial shows how to install python3-faiss on Kali Linux
$
sudo apt update
Copied
$
sudo apt install
python3-faiss
Copied
2. Uninstall "python3-faiss" package
This is a short guide on how to uninstall python3-faiss on Kali Linux:
$
sudo apt remove
python3-faiss
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the python3-faiss package on Kali Linux
Package: python3-faiss
Source: faiss
Version: 1.7.4-3
Installed-Size: 8568
Maintainer: Debian Deep Learning Team
Architecture: amd64
Depends: python3 (<< 3.12), python3 (>= 3.11~), python3-numpy (>= 1:1.22.0), python3-numpy-abi9, python3:any, libblas3 | libblas.so.3, libc6 (>= 2.34), libgcc-s1 (>= 3.4), libgomp1 (>= 6), liblapack3 | liblapack.so.3, libstdc++6 (>= 12)
Size: 1722396
SHA256: 8f7a78d50b1ba7468a6bdc1278af1c15093cb7c1844c3ebe398fce14dc3f36db
SHA1: 30fb6ad3ba014fe67ab4620e19926364a9fa1ae1
MD5sum: a12a9dd646969dbebcb4a940980d436d
Description: Python 3 module for efficient similarity search and clustering of dense vectors
Faiss is a library for efficient similarity search and clustering of dense
vectors. It contains algorithms that search in sets of vectors of any size, up
to ones that possibly do not fit in RAM. It also contains supporting code for
evaluation and parameter tuning. Faiss is written in C++ with complete wrappers
for Python/numpy. Some of the most useful algorithms are implemented on the
GPU. It is developed by Facebook AI Research.
.
This package contains the CPU-only version of the Python interface.
Description-md5:
Homepage: https://github.com/facebookresearch/faiss
Section: science
Priority: optional
Filename: pool/main/f/faiss/python3-faiss_1.7.4-3_amd64.deb
Source: faiss
Version: 1.7.4-3
Installed-Size: 8568
Maintainer: Debian Deep Learning Team
Architecture: amd64
Depends: python3 (<< 3.12), python3 (>= 3.11~), python3-numpy (>= 1:1.22.0), python3-numpy-abi9, python3:any, libblas3 | libblas.so.3, libc6 (>= 2.34), libgcc-s1 (>= 3.4), libgomp1 (>= 6), liblapack3 | liblapack.so.3, libstdc++6 (>= 12)
Size: 1722396
SHA256: 8f7a78d50b1ba7468a6bdc1278af1c15093cb7c1844c3ebe398fce14dc3f36db
SHA1: 30fb6ad3ba014fe67ab4620e19926364a9fa1ae1
MD5sum: a12a9dd646969dbebcb4a940980d436d
Description: Python 3 module for efficient similarity search and clustering of dense vectors
Faiss is a library for efficient similarity search and clustering of dense
vectors. It contains algorithms that search in sets of vectors of any size, up
to ones that possibly do not fit in RAM. It also contains supporting code for
evaluation and parameter tuning. Faiss is written in C++ with complete wrappers
for Python/numpy. Some of the most useful algorithms are implemented on the
GPU. It is developed by Facebook AI Research.
.
This package contains the CPU-only version of the Python interface.
Description-md5:
Homepage: https://github.com/facebookresearch/faiss
Section: science
Priority: optional
Filename: pool/main/f/faiss/python3-faiss_1.7.4-3_amd64.deb