How to Install and Uninstall r-cran-brms Package on Kali Linux

Last updated: January 11,2025

1. Install "r-cran-brms" package

Please follow the step by step instructions below to install r-cran-brms on Kali Linux

$ sudo apt update $ sudo apt install r-cran-brms

2. Uninstall "r-cran-brms" package

Please follow the guidance below to uninstall r-cran-brms on Kali Linux:

$ sudo apt remove r-cran-brms $ sudo apt autoclean && sudo apt autoremove

3. Information about the r-cran-brms package on Kali Linux

Package: r-cran-brms
Version: 2.20.4-1
Installed-Size: 7976
Maintainer: Debian R Packages Maintainers
Architecture: all
Depends: r-api-4.0, r-cran-rcpp (>= 0.12.0), r-cran-rstan (>= 2.26.0), r-cran-ggplot2 (>= 2.0.0), r-cran-loo (>= 2.3.1), r-cran-posterior (>= 1.0.0), r-cran-matrix (>= 1.1.1), r-cran-mgcv (>= 1.8-13), r-cran-rstantools (>= 2.1.1), r-cran-bayesplot (>= 1.5.0), r-cran-shinystan (>= 2.4.0), r-cran-bridgesampling (>= 0.3-0), r-cran-glue (>= 1.3.0), r-cran-rlang (>= 1.0.0), r-cran-future (>= 1.19.0), r-cran-matrixstats, r-cran-nleqslv, r-cran-nlme, r-cran-coda, r-cran-abind, r-cran-backports
Recommends: r-cran-testthat (>= 0.9.1), r-cran-emmeans (>= 1.4.2), r-cran-projpred (>= 2.0.0), r-cran-rwiener, r-cran-rtdists, r-cran-extradistr, r-cran-processx, r-cran-mice, r-cran-spdep, r-cran-mnormt, r-cran-lme4, r-cran-splines2, r-cran-ape, r-cran-arm, r-cran-statmod, r-cran-digest, r-cran-diffobj, r-cran-r.rsp, r-cran-gtable, r-cran-shiny, r-cran-knitr, r-cran-rmarkdown
Size: 6170732
SHA256: 751d7d0ff52f1bad05c53797719aee274933c6e48b9ce949b9ba5058a41ba912
SHA1: 3a8a958ef25f08446dcf770bce547e28583b115f
MD5sum: 3dc7806636b4d877c62f176da626b214
Description: GNU R Bayesian regression models using 'Stan'
Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others
-- linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include non-linear and
smooth terms, auto-correlation structures, censored data, meta-analytic
standard errors, and quite a few more. In addition, all parameters of
the response distribution can be predicted in order to perform
distributional regression. Prior specifications are flexible and
explicitly encourage users to apply prior distributions that actually
reflect their beliefs. Model fit can easily be assessed and compared
with posterior predictive checks and leave-one-out cross-validation.
Description-md5:
Homepage: https://cran.r-project.org/package=brms
Section: gnu-r
Priority: optional
Filename: pool/main/r/r-cran-brms/r-cran-brms_2.20.4-1_all.deb