How to Install and Uninstall r-cran-riskregression Package on Kali Linux
Last updated: January 11,2025
1. Install "r-cran-riskregression" package
Here is a brief guide to show you how to install r-cran-riskregression on Kali Linux
$
sudo apt update
Copied
$
sudo apt install
r-cran-riskregression
Copied
2. Uninstall "r-cran-riskregression" package
Please follow the step by step instructions below to uninstall r-cran-riskregression on Kali Linux:
$
sudo apt remove
r-cran-riskregression
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the r-cran-riskregression package on Kali Linux
Package: r-cran-riskregression
Version: 2023.12.21+ds-1
Installed-Size: 2164
Maintainer: Debian R Packages Maintainers
Architecture: amd64
Depends: r-api-4.0, r-cran-cmprsk, r-cran-data.table (>= 1.12.2), r-cran-doparallel, r-cran-foreach, r-cran-ggplot2 (>= 3.1.0), r-cran-lattice, r-cran-lava (>= 1.6.5), r-cran-mets, r-cran-mvtnorm, r-cran-plotrix, r-cran-prodlim (>= 2018.4.18), r-cran-publish, r-cran-ranger, r-cran-rcpp, r-cran-rms (>= 5.1.3), r-cran-survival (>= 2.44.1), r-cran-timereg (>= 1.9.3), r-cran-rcpparmadillo, libblas3 | libblas.so.3, libc6 (>= 2.29), libgcc-s1 (>= 3.0), libstdc++6 (>= 13.1)
Recommends: r-cran-boot, r-cran-smcfcs, r-cran-glmnet, r-cran-gbm, r-cran-mgcv, r-cran-nnls, r-cran-numderiv, r-cran-party, r-cran-pec, r-cran-proc, r-cran-randomforest, r-cran-rpart, r-cran-testthat, r-cran-r.rsp
Size: 1611168
SHA256: 717bb76db6f99d3b9a3596d2180772c19114e71a0a14287dec17c07015285bdf
SHA1: 545b976b3bef695bbe07f2300f763f091821b3bd
MD5sum: ab44d69b0f7e5e6d7193f77d7fe3afbb
Description: GNU R Risk Regression Models and Prediction Scores for Survival
Analysis with Competing Risks Implementation of the following methods
for event history analysis. Risk regression models for survival
endpoints also in the presence of competing risks are fitted using
binomial regression based on a time sequence of binary event status
variables. A formula interface for the Fine-Gray regression model and an
interface for the combination of cause-specific Cox regression models. A
toolbox for assessing and comparing performance of risk predictions
(risk markers and risk prediction models). Prediction performance is
measured by the Brier score and the area under the ROC curve for binary
possibly time-dependent outcome. Inverse probability of censoring
weighting and pseudo values are used to deal with right censored data.
Lists of risk markers and lists of risk models are assessed
simultaneously. Cross-validation repeatedly splits the data, trains the
risk prediction models on one part of each split and then summarizes and
compares the performance across splits.
Description-md5:
Homepage: https://cran.r-project.org/package=riskRegression
Section: gnu-r
Priority: optional
Filename: pool/main/r/r-cran-riskregression/r-cran-riskregression_2023.12.21+ds-1_amd64.deb
Version: 2023.12.21+ds-1
Installed-Size: 2164
Maintainer: Debian R Packages Maintainers
Architecture: amd64
Depends: r-api-4.0, r-cran-cmprsk, r-cran-data.table (>= 1.12.2), r-cran-doparallel, r-cran-foreach, r-cran-ggplot2 (>= 3.1.0), r-cran-lattice, r-cran-lava (>= 1.6.5), r-cran-mets, r-cran-mvtnorm, r-cran-plotrix, r-cran-prodlim (>= 2018.4.18), r-cran-publish, r-cran-ranger, r-cran-rcpp, r-cran-rms (>= 5.1.3), r-cran-survival (>= 2.44.1), r-cran-timereg (>= 1.9.3), r-cran-rcpparmadillo, libblas3 | libblas.so.3, libc6 (>= 2.29), libgcc-s1 (>= 3.0), libstdc++6 (>= 13.1)
Recommends: r-cran-boot, r-cran-smcfcs, r-cran-glmnet, r-cran-gbm, r-cran-mgcv, r-cran-nnls, r-cran-numderiv, r-cran-party, r-cran-pec, r-cran-proc, r-cran-randomforest, r-cran-rpart, r-cran-testthat, r-cran-r.rsp
Size: 1611168
SHA256: 717bb76db6f99d3b9a3596d2180772c19114e71a0a14287dec17c07015285bdf
SHA1: 545b976b3bef695bbe07f2300f763f091821b3bd
MD5sum: ab44d69b0f7e5e6d7193f77d7fe3afbb
Description: GNU R Risk Regression Models and Prediction Scores for Survival
Analysis with Competing Risks Implementation of the following methods
for event history analysis. Risk regression models for survival
endpoints also in the presence of competing risks are fitted using
binomial regression based on a time sequence of binary event status
variables. A formula interface for the Fine-Gray regression model and an
interface for the combination of cause-specific Cox regression models. A
toolbox for assessing and comparing performance of risk predictions
(risk markers and risk prediction models). Prediction performance is
measured by the Brier score and the area under the ROC curve for binary
possibly time-dependent outcome. Inverse probability of censoring
weighting and pseudo values are used to deal with right censored data.
Lists of risk markers and lists of risk models are assessed
simultaneously. Cross-validation repeatedly splits the data, trains the
risk prediction models on one part of each split and then summarizes and
compares the performance across splits.
Description-md5:
Homepage: https://cran.r-project.org/package=riskRegression
Section: gnu-r
Priority: optional
Filename: pool/main/r/r-cran-riskregression/r-cran-riskregression_2023.12.21+ds-1_amd64.deb