How to Install and Uninstall azove Package on openSUSE Leap
Last updated: December 25,2024
1. Install "azove" package
Please follow the guidance below to install azove on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
azove
Copied
2. Uninstall "azove" package
This guide let you learn how to uninstall azove on openSUSE Leap:
$
sudo zypper remove
azove
Copied
3. Information about the azove package on openSUSE Leap
Information for package azove:
------------------------------
Repository : Main Repository
Name : azove
Version : 2.0-bp155.3.11
Arch : x86_64
Vendor : openSUSE
Installed Size : 75.9 KiB
Installed : No
Status : not installed
Source package : azove-2.0-bp155.3.11.src
Upstream URL : https://www.mpi-inf.mpg.de/~behle/azove.html
Summary : Another Zero One Vertex Enumeration tool
Description :
azove is a tool designed for counting (without explicit enumeration)
and enumeration of 0/1 vertices.
Given a polytope by a linear relaxation or facet description P = {x |
Ax <= b}, all 0/1 points lying in P can be counted or enumerated.
This is done by intersecting the polytope P with the unit-hypercube
[0,1]^d. The integral vertices (no fractional ones) of this
intersection will be enumerated. If P is a 0/1 polytope, azove solves
the vertex enumeration problem. In fact, it can also solve the 0/1
knapsack problem and the 0/1 subset sum problem.
------------------------------
Repository : Main Repository
Name : azove
Version : 2.0-bp155.3.11
Arch : x86_64
Vendor : openSUSE
Installed Size : 75.9 KiB
Installed : No
Status : not installed
Source package : azove-2.0-bp155.3.11.src
Upstream URL : https://www.mpi-inf.mpg.de/~behle/azove.html
Summary : Another Zero One Vertex Enumeration tool
Description :
azove is a tool designed for counting (without explicit enumeration)
and enumeration of 0/1 vertices.
Given a polytope by a linear relaxation or facet description P = {x |
Ax <= b}, all 0/1 points lying in P can be counted or enumerated.
This is done by intersecting the polytope P with the unit-hypercube
[0,1]^d. The integral vertices (no fractional ones) of this
intersection will be enumerated. If P is a 0/1 polytope, azove solves
the vertex enumeration problem. In fact, it can also solve the 0/1
knapsack problem and the 0/1 subset sum problem.