How to Install and Uninstall libtensorflow_framework2-gnu-hpc Package on openSUSE Leap
Last updated: January 01,2025
Deprecated! Installation of this package may no longer be supported.
1. Install "libtensorflow_framework2-gnu-hpc" package
This is a short guide on how to install libtensorflow_framework2-gnu-hpc on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
libtensorflow_framework2-gnu-hpc
Copied
2. Uninstall "libtensorflow_framework2-gnu-hpc" package
Please follow the guidance below to uninstall libtensorflow_framework2-gnu-hpc on openSUSE Leap:
$
sudo zypper remove
libtensorflow_framework2-gnu-hpc
Copied
3. Information about the libtensorflow_framework2-gnu-hpc package on openSUSE Leap
Information for package libtensorflow_framework2-gnu-hpc:
---------------------------------------------------------
Repository : Main Repository
Name : libtensorflow_framework2-gnu-hpc
Version : 2.1.2-bp153.1.15
Arch : x86_64
Vendor : openSUSE
Installed Size : 18,9 MiB
Installed : No
Status : not installed
Source package : tensorflow2_2_1_2-gnu-hpc-2.1.2-bp153.1.15.src
Summary : Shared library for tensorflow
Description :
This open source software library for numerical computation is used for data
flow graphs. The graph nodes represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) that flow between
them. This flexible architecture enables you to deploy computation to one or
more CPUs in a desktop, server, or mobile device without rewriting code.
---------------------------------------------------------
Repository : Main Repository
Name : libtensorflow_framework2-gnu-hpc
Version : 2.1.2-bp153.1.15
Arch : x86_64
Vendor : openSUSE
Installed Size : 18,9 MiB
Installed : No
Status : not installed
Source package : tensorflow2_2_1_2-gnu-hpc-2.1.2-bp153.1.15.src
Summary : Shared library for tensorflow
Description :
This open source software library for numerical computation is used for data
flow graphs. The graph nodes represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) that flow between
them. This flexible architecture enables you to deploy computation to one or
more CPUs in a desktop, server, or mobile device without rewriting code.