How to Install and Uninstall python3-munkres Package on openSUSE Leap
Last updated: December 24,2024
1. Install "python3-munkres" package
This is a short guide on how to install python3-munkres on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
python3-munkres
Copied
2. Uninstall "python3-munkres" package
This guide covers the steps necessary to uninstall python3-munkres on openSUSE Leap:
$
sudo zypper remove
python3-munkres
Copied
3. Information about the python3-munkres package on openSUSE Leap
Information for package python3-munkres:
----------------------------------------
Repository : Main Repository
Name : python3-munkres
Version : 1.1.2-bp155.2.11
Arch : noarch
Vendor : openSUSE
Installed Size : 56.4 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.2-bp155.2.11.src
Upstream URL : http://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.
----------------------------------------
Repository : Main Repository
Name : python3-munkres
Version : 1.1.2-bp155.2.11
Arch : noarch
Vendor : openSUSE
Installed Size : 56.4 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.2-bp155.2.11.src
Upstream URL : http://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.