How to Install and Uninstall python3-onnxconverter-common Package on openSUSE Leap
Last updated: November 23,2024
1. Install "python3-onnxconverter-common" package
This is a short guide on how to install python3-onnxconverter-common on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
python3-onnxconverter-common
Copied
2. Uninstall "python3-onnxconverter-common" package
Here is a brief guide to show you how to uninstall python3-onnxconverter-common on openSUSE Leap:
$
sudo zypper remove
python3-onnxconverter-common
Copied
3. Information about the python3-onnxconverter-common package on openSUSE Leap
Information for package python3-onnxconverter-common:
-----------------------------------------------------
Repository : Main Repository
Name : python3-onnxconverter-common
Version : 1.6.5-bp155.2.10
Arch : noarch
Vendor : openSUSE
Installed Size : 441.5 KiB
Installed : No
Status : not installed
Source package : python-onnxconverter-common-1.6.5-bp155.2.10.src
Upstream URL : https://github.com/microsoft/onnxconverter-common
Summary : ONNX Converter and Optimization Tools
Description :
The onnxconverter-common package provides common functions and utilities for
use in converters from various AI frameworks to ONNX. It also enables the
different converters to work together to convert a model from mixed frameworks,
like a scikit-learn pipeline embedding a xgboost model.
-----------------------------------------------------
Repository : Main Repository
Name : python3-onnxconverter-common
Version : 1.6.5-bp155.2.10
Arch : noarch
Vendor : openSUSE
Installed Size : 441.5 KiB
Installed : No
Status : not installed
Source package : python-onnxconverter-common-1.6.5-bp155.2.10.src
Upstream URL : https://github.com/microsoft/onnxconverter-common
Summary : ONNX Converter and Optimization Tools
Description :
The onnxconverter-common package provides common functions and utilities for
use in converters from various AI frameworks to ONNX. It also enables the
different converters to work together to convert a model from mixed frameworks,
like a scikit-learn pipeline embedding a xgboost model.