How to Install and Uninstall python3-statsmodels Package on openSUSE Leap
Last updated: January 26,2025
1. Install "python3-statsmodels" package
This guide let you learn how to install python3-statsmodels on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
python3-statsmodels
Copied
2. Uninstall "python3-statsmodels" package
In this section, we are going to explain the necessary steps to uninstall python3-statsmodels on openSUSE Leap:
$
sudo zypper remove
python3-statsmodels
Copied
3. Information about the python3-statsmodels package on openSUSE Leap
Information for package python3-statsmodels:
--------------------------------------------
Repository : Main Repository
Name : python3-statsmodels
Version : 0.10.2-bp155.3.5
Arch : x86_64
Vendor : openSUSE
Installed Size : 42.9 MiB
Installed : No
Status : not installed
Source package : python-statsmodels-0.10.2-bp155.3.5.src
Upstream URL : http://statsmodels.sourceforge.net/
Summary : A Python module that allows users to explore data
Description :
Statsmodels is a Python module that allows users to explore data,
estimate statistical models, and perform statistical tests.
An extensive list of descriptive statistics, statistical tests,
plotting functions, and result statistics are available for different
types of data and each estimator. Researchers across fields may find
that statsmodels fully meets their needs for statistical computing
and data analysis in Python.
--------------------------------------------
Repository : Main Repository
Name : python3-statsmodels
Version : 0.10.2-bp155.3.5
Arch : x86_64
Vendor : openSUSE
Installed Size : 42.9 MiB
Installed : No
Status : not installed
Source package : python-statsmodels-0.10.2-bp155.3.5.src
Upstream URL : http://statsmodels.sourceforge.net/
Summary : A Python module that allows users to explore data
Description :
Statsmodels is a Python module that allows users to explore data,
estimate statistical models, and perform statistical tests.
An extensive list of descriptive statistics, statistical tests,
plotting functions, and result statistics are available for different
types of data and each estimator. Researchers across fields may find
that statsmodels fully meets their needs for statistical computing
and data analysis in Python.