How to Install and Uninstall gap-cubefree Package on openSuSE Tumbleweed
Last updated: December 26,2024
1. Install "gap-cubefree" package
Please follow the guidance below to install gap-cubefree on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
gap-cubefree
Copied
2. Uninstall "gap-cubefree" package
Here is a brief guide to show you how to uninstall gap-cubefree on openSuSE Tumbleweed:
$
sudo zypper remove
gap-cubefree
Copied
3. Information about the gap-cubefree package on openSuSE Tumbleweed
Information for package gap-cubefree:
-------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : gap-cubefree
Version : 1.19-1.2
Arch : noarch
Vendor : openSUSE
Installed Size : 416.3 KiB
Installed : No
Status : not installed
Source package : gap-cubefree-1.19-1.2.src
Upstream URL : https://gap-packages.github.io/cubefree/
Summary : GAP: Construction of groups of a given cubefree order
Description :
The Cubefree package contains methods to construct up to isomorphism
the groups of a given (reasonable) cubefree order. The main function
ConstructAllCFGroups(n) constructs all groups of a given cubefree
order n. The function NumberCFGroups(n) counts all groups of a
cubefree order n. Furthermore, IrreducibleSubgroupsOfGL(2,q)
constructs the irreducible subgroups of GL(2,q), q=p^r, p>=5 prime,
up to conjugacy and RewriteAbsolutelyIrreducibleMatrixGroup(G)
rewrites the absolutely irreducible matrix group G (over a finite
field) over a minimal subfield.
-------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : gap-cubefree
Version : 1.19-1.2
Arch : noarch
Vendor : openSUSE
Installed Size : 416.3 KiB
Installed : No
Status : not installed
Source package : gap-cubefree-1.19-1.2.src
Upstream URL : https://gap-packages.github.io/cubefree/
Summary : GAP: Construction of groups of a given cubefree order
Description :
The Cubefree package contains methods to construct up to isomorphism
the groups of a given (reasonable) cubefree order. The main function
ConstructAllCFGroups(n) constructs all groups of a given cubefree
order n. The function NumberCFGroups(n) counts all groups of a
cubefree order n. Furthermore, IrreducibleSubgroupsOfGL(2,q)
constructs the irreducible subgroups of GL(2,q), q=p^r, p>=5 prime,
up to conjugacy and RewriteAbsolutelyIrreducibleMatrixGroup(G)
rewrites the absolutely irreducible matrix group G (over a finite
field) over a minimal subfield.