How to Install and Uninstall gap-polenta Package on openSuSE Tumbleweed
Last updated: November 12,2024
1. Install "gap-polenta" package
In this section, we are going to explain the necessary steps to install gap-polenta on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
gap-polenta
Copied
2. Uninstall "gap-polenta" package
This guide covers the steps necessary to uninstall gap-polenta on openSuSE Tumbleweed:
$
sudo zypper remove
gap-polenta
Copied
3. Information about the gap-polenta package on openSuSE Tumbleweed
Information for package gap-polenta:
------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : gap-polenta
Version : 1.3.10-1.2
Arch : noarch
Vendor : openSUSE
Installed Size : 798.5 KiB
Installed : No
Status : not installed
Source package : gap-polenta-1.3.10-1.2.src
Upstream URL : https://gap-packages.github.io/polenta/
Summary : GAP: Polycyclic presentations for matrix groups
Description :
The Polenta package provides methods to compute polycyclic
presentations of matrix groups (finite or infinite). As a by-product,
this package gives some functionality to compute certain module
series for modules of solvable groups. For example, if G is a
rational polycyclic matrix group, then we can compute the radical
series of the natural Q[G]-module Q^d.
------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : gap-polenta
Version : 1.3.10-1.2
Arch : noarch
Vendor : openSUSE
Installed Size : 798.5 KiB
Installed : No
Status : not installed
Source package : gap-polenta-1.3.10-1.2.src
Upstream URL : https://gap-packages.github.io/polenta/
Summary : GAP: Polycyclic presentations for matrix groups
Description :
The Polenta package provides methods to compute polycyclic
presentations of matrix groups (finite or infinite). As a by-product,
this package gives some functionality to compute certain module
series for modules of solvable groups. For example, if G is a
rational polycyclic matrix group, then we can compute the radical
series of the natural Q[G]-module Q^d.