How to Install and Uninstall python3-vigranumpy Package on openSuSE Tumbleweed
Last updated: November 19,2024
1. Install "python3-vigranumpy" package
Here is a brief guide to show you how to install python3-vigranumpy on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python3-vigranumpy
Copied
2. Uninstall "python3-vigranumpy" package
Please follow the instructions below to uninstall python3-vigranumpy on openSuSE Tumbleweed:
$
sudo zypper remove
python3-vigranumpy
Copied
3. Information about the python3-vigranumpy package on openSuSE Tumbleweed
Information for package python3-vigranumpy:
-------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python3-vigranumpy
Version : 1.11.2-1.1
Arch : x86_64
Vendor : openSUSE
Installed Size : 21.8 MiB
Installed : No
Status : not installed
Source package : vigra-1.11.2-1.1.src
Upstream URL : http://ukoethe.github.io/vigra/
Summary : Numpy support for VIGRA library
Description :
VIGRA stands for "Vision with Generic Algorithms". It is a novel
computer vision library that puts its main emphasis on customizable
algorithms and data structures. By using template techniques similar to
those in the C++ Standard Template Library, you can easily adapt any
VIGRA component to the needs of your application, without giving up
execution speed. This package contains python / numpy bindings for VIGRA
-------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python3-vigranumpy
Version : 1.11.2-1.1
Arch : x86_64
Vendor : openSUSE
Installed Size : 21.8 MiB
Installed : No
Status : not installed
Source package : vigra-1.11.2-1.1.src
Upstream URL : http://ukoethe.github.io/vigra/
Summary : Numpy support for VIGRA library
Description :
VIGRA stands for "Vision with Generic Algorithms". It is a novel
computer vision library that puts its main emphasis on customizable
algorithms and data structures. By using template techniques similar to
those in the C++ Standard Template Library, you can easily adapt any
VIGRA component to the needs of your application, without giving up
execution speed. This package contains python / numpy bindings for VIGRA