How to Install and Uninstall python310-altair Package on openSuSE Tumbleweed
Last updated: November 24,2024
1. Install "python310-altair" package
Please follow the guidance below to install python310-altair on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python310-altair
Copied
2. Uninstall "python310-altair" package
This guide let you learn how to uninstall python310-altair on openSuSE Tumbleweed:
$
sudo zypper remove
python310-altair
Copied
3. Information about the python310-altair package on openSuSE Tumbleweed
Information for package python310-altair:
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python310-altair
Version : 5.2.0-1.1
Arch : noarch
Vendor : openSUSE
Installed Size : 12.1 MiB
Installed : No
Status : not installed
Source package : python-altair-5.2.0-1.1.src
Upstream URL : https://github.com/altair-viz/altair
Summary : Declarative statistical visualization library for Python
Description :
This package provides a Python API for building statistical visualizations
in a declarative manner. This API contains no actual visualization rendering
code, but instead emits JSON data structures following the `Vega-Lite`_
specification. For convenience, Altair can optionally use `ipyvega`_ to
seamlessly display client-side renderings in the Jupyter notebook.
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python310-altair
Version : 5.2.0-1.1
Arch : noarch
Vendor : openSUSE
Installed Size : 12.1 MiB
Installed : No
Status : not installed
Source package : python-altair-5.2.0-1.1.src
Upstream URL : https://github.com/altair-viz/altair
Summary : Declarative statistical visualization library for Python
Description :
This package provides a Python API for building statistical visualizations
in a declarative manner. This API contains no actual visualization rendering
code, but instead emits JSON data structures following the `Vega-Lite`_
specification. For convenience, Altair can optionally use `ipyvega`_ to
seamlessly display client-side renderings in the Jupyter notebook.