How to Install and Uninstall python310-onnxconverter-common Package on openSuSE Tumbleweed
Last updated: November 23,2024
1. Install "python310-onnxconverter-common" package
This guide covers the steps necessary to install python310-onnxconverter-common on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python310-onnxconverter-common
Copied
2. Uninstall "python310-onnxconverter-common" package
This guide let you learn how to uninstall python310-onnxconverter-common on openSuSE Tumbleweed:
$
sudo zypper remove
python310-onnxconverter-common
Copied
3. Information about the python310-onnxconverter-common package on openSuSE Tumbleweed
Information for package python310-onnxconverter-common:
-------------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python310-onnxconverter-common
Version : 1.9.0-2.8
Arch : noarch
Vendor : openSUSE
Installed Size : 699.3 KiB
Installed : No
Status : not installed
Source package : python-onnxconverter-common-1.9.0-2.8.src
Upstream URL : https://github.com/microsoft/onnxconverter-common
Summary : ONNX Converter and Optimization Tools
Description :
The onnxconverter-common package provides common functions and utilities for
use in converters from various AI frameworks to ONNX. It also enables the
different converters to work together to convert a model from mixed frameworks,
like a scikit-learn pipeline embedding a xgboost model.
-------------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python310-onnxconverter-common
Version : 1.9.0-2.8
Arch : noarch
Vendor : openSUSE
Installed Size : 699.3 KiB
Installed : No
Status : not installed
Source package : python-onnxconverter-common-1.9.0-2.8.src
Upstream URL : https://github.com/microsoft/onnxconverter-common
Summary : ONNX Converter and Optimization Tools
Description :
The onnxconverter-common package provides common functions and utilities for
use in converters from various AI frameworks to ONNX. It also enables the
different converters to work together to convert a model from mixed frameworks,
like a scikit-learn pipeline embedding a xgboost model.