How to Install and Uninstall python311-munkres Package on openSuSE Tumbleweed
Last updated: December 24,2024
1. Install "python311-munkres" package
This is a short guide on how to install python311-munkres on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python311-munkres
Copied
2. Uninstall "python311-munkres" package
This guide let you learn how to uninstall python311-munkres on openSuSE Tumbleweed:
$
sudo zypper remove
python311-munkres
Copied
3. Information about the python311-munkres package on openSuSE Tumbleweed
Information for package python311-munkres:
------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python311-munkres
Version : 1.1.4-4.7
Arch : noarch
Vendor : openSUSE
Installed Size : 76.6 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.4-4.7.src
Upstream URL : https://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.
------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python311-munkres
Version : 1.1.4-4.7
Arch : noarch
Vendor : openSUSE
Installed Size : 76.6 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.4-4.7.src
Upstream URL : https://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.