How to Install and Uninstall python311-vega_datasets Package on openSuSE Tumbleweed
Last updated: November 24,2024
1. Install "python311-vega_datasets" package
Please follow the guidance below to install python311-vega_datasets on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python311-vega_datasets
Copied
2. Uninstall "python311-vega_datasets" package
This tutorial shows how to uninstall python311-vega_datasets on openSuSE Tumbleweed:
$
sudo zypper remove
python311-vega_datasets
Copied
3. Information about the python311-vega_datasets package on openSuSE Tumbleweed
Information for package python311-vega_datasets:
------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python311-vega_datasets
Version : 0.9.0-1.13
Arch : noarch
Vendor : openSUSE
Installed Size : 924.6 KiB
Installed : No
Status : not installed
Source package : python-vega_datasets-0.9.0-1.13.src
Upstream URL : http://github.com/altair-viz/vega_datasets
Summary : A Python package for offline access to Vega datasets
Description :
A Python package for offline access to vega datasets.
- Provide straightforward access in Python to the datasets made available
- return the results in the form of a Pandas dataframe
- wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection
------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python311-vega_datasets
Version : 0.9.0-1.13
Arch : noarch
Vendor : openSUSE
Installed Size : 924.6 KiB
Installed : No
Status : not installed
Source package : python-vega_datasets-0.9.0-1.13.src
Upstream URL : http://github.com/altair-viz/vega_datasets
Summary : A Python package for offline access to Vega datasets
Description :
A Python package for offline access to vega datasets.
- Provide straightforward access in Python to the datasets made available
- return the results in the form of a Pandas dataframe
- wherever dataset size and/or license constraints make it possible, bundle the dataset with the package so that datasets can be loaded in the absence of a web connection