How to Install and Uninstall python312-colorspacious Package on openSuSE Tumbleweed
Last updated: November 07,2024
1. Install "python312-colorspacious" package
Please follow the steps below to install python312-colorspacious on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python312-colorspacious
Copied
2. Uninstall "python312-colorspacious" package
Learn how to uninstall python312-colorspacious on openSuSE Tumbleweed:
$
sudo zypper remove
python312-colorspacious
Copied
3. Information about the python312-colorspacious package on openSuSE Tumbleweed
Information for package python312-colorspacious:
------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-colorspacious
Version : 1.1.2-2.11
Arch : noarch
Vendor : openSUSE
Installed Size : 300.0 KiB
Installed : No
Status : not installed
Source package : python-colorspacious-1.1.2-2.11.src
Upstream URL : https://github.com/njsmith/colorspacious
Summary : Python library for doing colorspace conversions
Description :
Colorspacious is a library for performing colorspace conversions.
In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), it also includes color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009), a
complete implementation of CIECAM02
, and the perceptually
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).
------------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-colorspacious
Version : 1.1.2-2.11
Arch : noarch
Vendor : openSUSE
Installed Size : 300.0 KiB
Installed : No
Status : not installed
Source package : python-colorspacious-1.1.2-2.11.src
Upstream URL : https://github.com/njsmith/colorspacious
Summary : Python library for doing colorspace conversions
Description :
Colorspacious is a library for performing colorspace conversions.
In addition to the most common standard colorspaces (sRGB, XYZ, xyY,
CIELab, CIELCh), it also includes color vision deficiency ("color
blindness") simulations using the approach of Machado et al (2009), a
complete implementation of CIECAM02
uniform CAM02-UCS / CAM02-LCD / CAM02-SCD spaces proposed by Luo et al
(2006).