How to Install and Uninstall python312-munkres Package on openSuSE Tumbleweed
Last updated: November 08,2024
1. Install "python312-munkres" package
Please follow the steps below to install python312-munkres on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python312-munkres
Copied
2. Uninstall "python312-munkres" package
This tutorial shows how to uninstall python312-munkres on openSuSE Tumbleweed:
$
sudo zypper remove
python312-munkres
Copied
3. Information about the python312-munkres package on openSuSE Tumbleweed
Information for package python312-munkres:
------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-munkres
Version : 1.1.4-4.7
Arch : noarch
Vendor : openSUSE
Installed Size : 72.4 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.4-4.7.src
Upstream URL : https://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.
------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-munkres
Version : 1.1.4-4.7
Arch : noarch
Vendor : openSUSE
Installed Size : 72.4 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.4-4.7.src
Upstream URL : https://software.clapper.org/munkres/
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.