How to Install and Uninstall python312-Rtree Package on openSuSE Tumbleweed
Last updated: December 26,2024
1. Install "python312-Rtree" package
This is a short guide on how to install python312-Rtree on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python312-Rtree
Copied
2. Uninstall "python312-Rtree" package
Please follow the step by step instructions below to uninstall python312-Rtree on openSuSE Tumbleweed:
$
sudo zypper remove
python312-Rtree
Copied
3. Information about the python312-Rtree package on openSuSE Tumbleweed
Information for package python312-Rtree:
----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-Rtree
Version : 0.9.7-1.11
Arch : noarch
Vendor : openSUSE
Installed Size : 364.0 KiB
Installed : No
Status : not installed
Source package : python-Rtree-0.9.7-1.11.src
Upstream URL : https://github.com/Toblerity/rtree
Summary : R-Tree spatial index for Python GIS
Description :
A ctypes Python wrapper of libspatialindex that provides a number of advanced
spatial indexing features for the spatially curious Python user.
* Nearest neighbor search
* Intersection search
* Multi-dimensional indexes
* Clustered indexes (store Python pickles directly with index entries)
* Bulk loading
* Deletion
* Disk serialization
* Custom storage implementation (to implement spatial indexing in ZODB,
for example)
----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python312-Rtree
Version : 0.9.7-1.11
Arch : noarch
Vendor : openSUSE
Installed Size : 364.0 KiB
Installed : No
Status : not installed
Source package : python-Rtree-0.9.7-1.11.src
Upstream URL : https://github.com/Toblerity/rtree
Summary : R-Tree spatial index for Python GIS
Description :
A ctypes Python wrapper of libspatialindex that provides a number of advanced
spatial indexing features for the spatially curious Python user.
* Nearest neighbor search
* Intersection search
* Multi-dimensional indexes
* Clustered indexes (store Python pickles directly with index entries)
* Bulk loading
* Deletion
* Disk serialization
* Custom storage implementation (to implement spatial indexing in ZODB,
for example)