How to Install and Uninstall python38-munkres Package on openSuSE Tumbleweed
Last updated: January 28,2025
Deprecated! Installation of this package may no longer be supported.
1. Install "python38-munkres" package
Please follow the step by step instructions below to install python38-munkres on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python38-munkres
Copied
2. Uninstall "python38-munkres" package
Please follow the step by step instructions below to uninstall python38-munkres on openSuSE Tumbleweed:
$
sudo zypper remove
python38-munkres
Copied
3. Information about the python38-munkres package on openSuSE Tumbleweed
Information for package python38-munkres:
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python38-munkres
Version : 1.1.2-2.5
Arch : noarch
Vendor : openSUSE
Installed Size : 56,3 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.2-2.5.src
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python38-munkres
Version : 1.1.2-2.5
Arch : noarch
Vendor : openSUSE
Installed Size : 56,3 KiB
Installed : No
Status : not installed
Source package : python-munkres-1.1.2-2.5.src
Summary : Munkres implementation for Python
Description :
The Munkres module provides an O(n^3) implementation of the Munkres
algorithm (also called the Hungarian algorithm or the Kuhn-Munkres
algorithm). The algorithm models an assignment problem as an NxM cost
matrix, where each element represents the cost of assigning the i'th
worker to the j'th job, and it figures out the least-cost solution,
choosing a single item from each row and column in the matrix, such
that no row and no column are used more than once.
This particular implementation is based on
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html.