How to Install and Uninstall python39-Levenshtein Package on openSuSE Tumbleweed
Last updated: February 08,2025
1. Install "python39-Levenshtein" package
Please follow the guidelines below to install python39-Levenshtein on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
python39-Levenshtein
Copied
2. Uninstall "python39-Levenshtein" package
In this section, we are going to explain the necessary steps to uninstall python39-Levenshtein on openSuSE Tumbleweed:
$
sudo zypper remove
python39-Levenshtein
Copied
3. Information about the python39-Levenshtein package on openSuSE Tumbleweed
Information for package python39-Levenshtein:
---------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python39-Levenshtein
Version : 0.12.0-5.1
Arch : x86_64
Vendor : openSUSE
Installed Size : 112.0 KiB
Installed : No
Status : not installed
Source package : python-Levenshtein-0.12.0-5.1.src
Upstream URL : https://github.com/ztane/python-Levenshtein/
Summary : Python extension computing string distances and similarities
Description :
The Levenshtein Python C extension module contains functions for fast
computation of
* Levenshtein (edit) distance, and edit operations
* string similarity
* approximate median strings, and generally string averaging
* string sequence and set similarity
It supports both normal and Unicode strings.
---------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : python39-Levenshtein
Version : 0.12.0-5.1
Arch : x86_64
Vendor : openSUSE
Installed Size : 112.0 KiB
Installed : No
Status : not installed
Source package : python-Levenshtein-0.12.0-5.1.src
Upstream URL : https://github.com/ztane/python-Levenshtein/
Summary : Python extension computing string distances and similarities
Description :
The Levenshtein Python C extension module contains functions for fast
computation of
* Levenshtein (edit) distance, and edit operations
* string similarity
* approximate median strings, and generally string averaging
* string sequence and set similarity
It supports both normal and Unicode strings.