How to Install and Uninstall texlive-bpolynomial Package on openSuSE Tumbleweed
Last updated: November 26,2024
1. Install "texlive-bpolynomial" package
Please follow the instructions below to install texlive-bpolynomial on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
texlive-bpolynomial
Copied
2. Uninstall "texlive-bpolynomial" package
Please follow the step by step instructions below to uninstall texlive-bpolynomial on openSuSE Tumbleweed:
$
sudo zypper remove
texlive-bpolynomial
Copied
3. Information about the texlive-bpolynomial package on openSuSE Tumbleweed
Information for package texlive-bpolynomial:
--------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : texlive-bpolynomial
Version : 2023.209.0.0.5svn15878-53.2
Arch : noarch
Vendor : openSUSE
Installed Size : 9.6 KiB
Installed : No
Status : not installed
Source package : texlive-specs-d-2023-53.2.src
Upstream URL : https://www.tug.org/texlive/
Summary : Drawing polynomial functions of up to order 3
Description :
This MetaPost package helps plotting polynomial and root
functions up to order three. The package provides macros to
calculate Bezier curves exactly matching a given constant,
linear, quadratic or cubic polynomial, or square or cubic root
function. In addition, tangents on all functions and
derivatives of polynomials can be calculated.
--------------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : texlive-bpolynomial
Version : 2023.209.0.0.5svn15878-53.2
Arch : noarch
Vendor : openSUSE
Installed Size : 9.6 KiB
Installed : No
Status : not installed
Source package : texlive-specs-d-2023-53.2.src
Upstream URL : https://www.tug.org/texlive/
Summary : Drawing polynomial functions of up to order 3
Description :
This MetaPost package helps plotting polynomial and root
functions up to order three. The package provides macros to
calculate Bezier curves exactly matching a given constant,
linear, quadratic or cubic polynomial, or square or cubic root
function. In addition, tangents on all functions and
derivatives of polynomials can be calculated.