How to Install and Uninstall texlive-tikz-nef Package on openSuSE Tumbleweed
Last updated: November 07,2024
1. Install "texlive-tikz-nef" package
This guide covers the steps necessary to install texlive-tikz-nef on openSuSE Tumbleweed
$
sudo zypper refresh
Copied
$
sudo zypper install
texlive-tikz-nef
Copied
2. Uninstall "texlive-tikz-nef" package
Here is a brief guide to show you how to uninstall texlive-tikz-nef on openSuSE Tumbleweed:
$
sudo zypper remove
texlive-tikz-nef
Copied
3. Information about the texlive-tikz-nef package on openSuSE Tumbleweed
Information for package texlive-tikz-nef:
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : texlive-tikz-nef
Version : 2023.209.0.0.1svn55920-53.2
Arch : noarch
Vendor : openSUSE
Installed Size : 1.6 KiB
Installed : No
Status : not installed
Source package : texlive-specs-x-2023-53.2.src
Upstream URL : https://www.tug.org/texlive/
Summary : Create diagrams for neural networks constructed with the methods of the Neural Engineering Framework (NEF)
Description :
The nef TikZ library provides predefined styles and shapes to
create diagrams for neural networks constructed with the
methods of the Neural Engineering Framework (NEF). The
following styles are supported: ea: ensemble array ens:
ensemble ext: external input or output inhibt: inhibitory
connection net: network pnode: pass-through node rect:
rectification ensemble recurrent: recurrent connection
-----------------------------------------
Repository : openSUSE-Tumbleweed-Oss
Name : texlive-tikz-nef
Version : 2023.209.0.0.1svn55920-53.2
Arch : noarch
Vendor : openSUSE
Installed Size : 1.6 KiB
Installed : No
Status : not installed
Source package : texlive-specs-x-2023-53.2.src
Upstream URL : https://www.tug.org/texlive/
Summary : Create diagrams for neural networks constructed with the methods of the Neural Engineering Framework (NEF)
Description :
The nef TikZ library provides predefined styles and shapes to
create diagrams for neural networks constructed with the
methods of the Neural Engineering Framework (NEF). The
following styles are supported: ea: ensemble array ens:
ensemble ext: external input or output inhibt: inhibitory
connection net: network pnode: pass-through node rect:
rectification ensemble recurrent: recurrent connection