How to Install and Uninstall isl.src Package on Oracle Linux 8
Last updated: November 27,2024
1. Install "isl.src" package
Please follow the guidance below to install isl.src on Oracle Linux 8
$
sudo dnf update
Copied
$
sudo dnf install
isl.src
Copied
2. Uninstall "isl.src" package
This tutorial shows how to uninstall isl.src on Oracle Linux 8:
$
sudo dnf remove
isl.src
Copied
$
sudo dnf autoremove
Copied
3. Information about the isl.src package on Oracle Linux 8
Last metadata expiration check: 2:29:23 ago on Mon Sep 12 02:51:38 2022.
Available Packages
Name : isl
Version : 0.16.1
Release : 6.el8
Architecture : src
Size : 2.6 M
Source : None
Repository : ol8_appstream
Summary : Integer point manipulation library
URL : http://isl.gforge.inria.fr/
License : MIT
Description : isl is a library for manipulating sets and relations of integer points
: bounded by linear constraints. Supported operations on sets include
: intersection, union, set difference, emptiness check, convex hull,
: (integer) affine hull, integer projection, computing the lexicographic
: minimum using parametric integer programming, coalescing and parametric
: vertex enumeration. It also includes an ILP solver based on generalized
: basis reduction, transitive closures on maps (which may encode infinite
: graphs), dependence analysis and bounds on piecewise step-polynomials.
Available Packages
Name : isl
Version : 0.16.1
Release : 6.el8
Architecture : src
Size : 2.6 M
Source : None
Repository : ol8_appstream
Summary : Integer point manipulation library
URL : http://isl.gforge.inria.fr/
License : MIT
Description : isl is a library for manipulating sets and relations of integer points
: bounded by linear constraints. Supported operations on sets include
: intersection, union, set difference, emptiness check, convex hull,
: (integer) affine hull, integer projection, computing the lexicographic
: minimum using parametric integer programming, coalescing and parametric
: vertex enumeration. It also includes an ILP solver based on generalized
: basis reduction, transitive closures on maps (which may encode infinite
: graphs), dependence analysis and bounds on piecewise step-polynomials.