How to Install and Uninstall python3-numexpr.x86_64 Package on Red Hat Enterprise Linux 8 (RHEL 8)
Last updated: January 29,2025
1. Install "python3-numexpr.x86_64" package
Please follow the steps below to install python3-numexpr.x86_64 on Red Hat Enterprise Linux 8 (RHEL 8)
$
sudo dnf update
Copied
$
sudo dnf install
python3-numexpr.x86_64
Copied
2. Uninstall "python3-numexpr.x86_64" package
Here is a brief guide to show you how to uninstall python3-numexpr.x86_64 on Red Hat Enterprise Linux 8 (RHEL 8):
$
sudo dnf remove
python3-numexpr.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-numexpr.x86_64 package on Red Hat Enterprise Linux 8 (RHEL 8)
Last metadata expiration check: 0:39:50 ago on Mon Feb 26 15:59:38 2024.
Available Packages
Name : python3-numexpr
Version : 2.7.0
Release : 3.el8
Architecture : x86_64
Size : 197 k
Source : python-numexpr-2.7.0-3.el8.src.rpm
Repository : epel
Summary : Fast numerical array expression evaluator for Python and NumPy
URL : https://github.com/pydata/numexpr
License : MIT
Description : The numexpr package evaluates multiple-operator array expressions many
: times faster than NumPy can. It accepts the expression as a string,
: analyzes it, rewrites it more efficiently, and compiles it to faster
: Python code on the fly. It’s the next best thing to writing the
: expression in C and compiling it with a specialized just-in-time (JIT)
: compiler, i.e. it does not require a compiler at runtime.
:
: This is the version for Python 3.
Available Packages
Name : python3-numexpr
Version : 2.7.0
Release : 3.el8
Architecture : x86_64
Size : 197 k
Source : python-numexpr-2.7.0-3.el8.src.rpm
Repository : epel
Summary : Fast numerical array expression evaluator for Python and NumPy
URL : https://github.com/pydata/numexpr
License : MIT
Description : The numexpr package evaluates multiple-operator array expressions many
: times faster than NumPy can. It accepts the expression as a string,
: analyzes it, rewrites it more efficiently, and compiles it to faster
: Python code on the fly. It’s the next best thing to writing the
: expression in C and compiling it with a specialized just-in-time (JIT)
: compiler, i.e. it does not require a compiler at runtime.
:
: This is the version for Python 3.