How to Install and Uninstall kokkos.x86_64 Package on Red Hat Enterprise Linux 9 (RHEL 9)
Last updated: January 15,2025
1. Install "kokkos.x86_64" package
Learn how to install kokkos.x86_64 on Red Hat Enterprise Linux 9 (RHEL 9)
$
sudo dnf update
Copied
$
sudo dnf install
kokkos.x86_64
Copied
2. Uninstall "kokkos.x86_64" package
This guide let you learn how to uninstall kokkos.x86_64 on Red Hat Enterprise Linux 9 (RHEL 9):
$
sudo dnf remove
kokkos.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the kokkos.x86_64 package on Red Hat Enterprise Linux 9 (RHEL 9)
Last metadata expiration check: 0:46:54 ago on Mon Feb 26 07:04:30 2024.
Available Packages
Name : kokkos
Version : 4.2.00
Release : 2.el9
Architecture : x86_64
Size : 158 k
Source : kokkos-4.2.00-2.el9.src.rpm
Repository : epel
Summary : Kokkos C++ Performance Portability Programming
URL : https://github.com/kokkos/kokkos
License : BSD
Description :
: Kokkos Core implements a programming model in C++ for writing performance
: portable applications targeting all major HPC platforms. For that purpose
: it provides abstractions for both parallel execution of code and data
: management. Kokkos is designed to target complex node architectures with
: N-level memory hierarchies and multiple types of execution resources. It
: currently can use OpenMP, Pthreads and CUDA as backend programming models.
Available Packages
Name : kokkos
Version : 4.2.00
Release : 2.el9
Architecture : x86_64
Size : 158 k
Source : kokkos-4.2.00-2.el9.src.rpm
Repository : epel
Summary : Kokkos C++ Performance Portability Programming
URL : https://github.com/kokkos/kokkos
License : BSD
Description :
: Kokkos Core implements a programming model in C++ for writing performance
: portable applications targeting all major HPC platforms. For that purpose
: it provides abstractions for both parallel execution of code and data
: management. Kokkos is designed to target complex node architectures with
: N-level memory hierarchies and multiple types of execution resources. It
: currently can use OpenMP, Pthreads and CUDA as backend programming models.