How to Install and Uninstall python3-reactivex.noarch Package on Red Hat Enterprise Linux 9 (RHEL 9)
Last updated: November 27,2024
1. Install "python3-reactivex.noarch" package
This guide let you learn how to install python3-reactivex.noarch on Red Hat Enterprise Linux 9 (RHEL 9)
$
sudo dnf update
Copied
$
sudo dnf install
python3-reactivex.noarch
Copied
2. Uninstall "python3-reactivex.noarch" package
Here is a brief guide to show you how to uninstall python3-reactivex.noarch on Red Hat Enterprise Linux 9 (RHEL 9):
$
sudo dnf remove
python3-reactivex.noarch
Copied
$
sudo dnf autoremove
Copied
3. Information about the python3-reactivex.noarch package on Red Hat Enterprise Linux 9 (RHEL 9)
Last metadata expiration check: 0:04:35 ago on Mon Feb 26 07:04:30 2024.
Available Packages
Name : python3-reactivex
Version : 4.0.4
Release : 1.el9
Architecture : noarch
Size : 302 k
Source : python-reactivex-4.0.4-1.el9.src.rpm
Repository : epel
Summary : API for asynchronous programming with observable streams
URL : https://github.com/ReactiveX/RxPY
License : MIT
Description : ReactiveX for Python (RxPY) is a library for composing asynchronous and
: event-based programs using observable sequences and pipable query
: operators in Python. Using Rx, developers represent asynchronous
: data streams with Observables, query asynchronous data streams
: using operators, and parameterize concurrency in data/event
: streams using Schedulers.
Available Packages
Name : python3-reactivex
Version : 4.0.4
Release : 1.el9
Architecture : noarch
Size : 302 k
Source : python-reactivex-4.0.4-1.el9.src.rpm
Repository : epel
Summary : API for asynchronous programming with observable streams
URL : https://github.com/ReactiveX/RxPY
License : MIT
Description : ReactiveX for Python (RxPY) is a library for composing asynchronous and
: event-based programs using observable sequences and pipable query
: operators in Python. Using Rx, developers represent asynchronous
: data streams with Observables, query asynchronous data streams
: using operators, and parameterize concurrency in data/event
: streams using Schedulers.