How to Install and Uninstall octave-interval.x86_64 Package on Rocky Linux 9
Last updated: November 26,2024
1. Install "octave-interval.x86_64" package
This guide let you learn how to install octave-interval.x86_64 on Rocky Linux 9
$
sudo dnf update
Copied
$
sudo dnf install
octave-interval.x86_64
Copied
2. Uninstall "octave-interval.x86_64" package
Please follow the guidelines below to uninstall octave-interval.x86_64 on Rocky Linux 9:
$
sudo dnf remove
octave-interval.x86_64
Copied
$
sudo dnf autoremove
Copied
3. Information about the octave-interval.x86_64 package on Rocky Linux 9
Last metadata expiration check: 2:02:59 ago on Fri Feb 16 06:49:52 2024.
Available Packages
Name : octave-interval
Version : 3.2.1
Release : 2.el9
Architecture : x86_64
Size : 1.7 M
Source : octave-interval-3.2.1-2.el9.src.rpm
Repository : epel
Summary : Interval arithmetic for Octave
URL : https://octave.sourceforge.io/interval/
License : GPLv3+ and LGPLv2+
Description : The Octave-forge Interval package for real-valued interval arithmetic
: allows one to evaluate functions over subsets of their domain. All
: results are verified, because interval computations automatically keep
: track of any errors. These concepts can be used to handle
: uncertainties, estimate arithmetic errors and produce reliable
: results. Also it can be applied to computer-assisted proofs,
: constraint programming, and verified computing. The implementation is
: based on interval boundaries represented by binary64 numbers and is
: conforming to IEEE Std 1788-2015, IEEE standard for interval
: arithmetic.
Available Packages
Name : octave-interval
Version : 3.2.1
Release : 2.el9
Architecture : x86_64
Size : 1.7 M
Source : octave-interval-3.2.1-2.el9.src.rpm
Repository : epel
Summary : Interval arithmetic for Octave
URL : https://octave.sourceforge.io/interval/
License : GPLv3+ and LGPLv2+
Description : The Octave-forge Interval package for real-valued interval arithmetic
: allows one to evaluate functions over subsets of their domain. All
: results are verified, because interval computations automatically keep
: track of any errors. These concepts can be used to handle
: uncertainties, estimate arithmetic errors and produce reliable
: results. Also it can be applied to computer-assisted proofs,
: constraint programming, and verified computing. The implementation is
: based on interval boundaries represented by binary64 numbers and is
: conforming to IEEE Std 1788-2015, IEEE standard for interval
: arithmetic.