How to Install and Uninstall libghc-hierarchical-clustering-prof Package on Ubuntu 20.10 (Groovy Gorilla)

Last updated: November 07,2024

1. Install "libghc-hierarchical-clustering-prof" package

This guide covers the steps necessary to install libghc-hierarchical-clustering-prof on Ubuntu 20.10 (Groovy Gorilla)

$ sudo apt update $ sudo apt install libghc-hierarchical-clustering-prof

2. Uninstall "libghc-hierarchical-clustering-prof" package

Please follow the steps below to uninstall libghc-hierarchical-clustering-prof on Ubuntu 20.10 (Groovy Gorilla):

$ sudo apt remove libghc-hierarchical-clustering-prof $ sudo apt autoclean && sudo apt autoremove

3. Information about the libghc-hierarchical-clustering-prof package on Ubuntu 20.10 (Groovy Gorilla)

Package: libghc-hierarchical-clustering-prof
Architecture: amd64
Version: 0.4.7-1build1
Priority: extra
Section: universe/haskell
Source: haskell-hierarchical-clustering
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Haskell Group
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 610
Provides: libghc-hierarchical-clustering-prof-0.4.7-0a9c1
Depends: libghc-hierarchical-clustering-dev (= 0.4.7-1build1), libghc-array-prof-0.5.4.0-4a8d7, libghc-base-prof-4.13.0.0-c9705, libghc-containers-prof-0.6.2.1-b8f3d
Filename: pool/universe/h/haskell-hierarchical-clustering/libghc-hierarchical-clustering-prof_0.4.7-1build1_amd64.deb
Size: 71572
MD5sum: f92d8b9cdcde6fc1fa22e2bf1c986e14
SHA1: e8d3f8d80f7f7e7bd1b55ce651627bda93c38e1e
SHA256: 528472e35d43514907da7fd69c554244d36aed00c3accc0568f3a19d147e3309
SHA512: 340d461b2f3a12bf53d3c57598eec502b74184783a7e1af7314d352a93bb562c97014731613acdcdcb59546ea503212dd65ea2792c2210c29cb150ca944afe6e
Homepage: https://hackage.haskell.org/package/hierarchical-clustering
Description-en: fast algorithms for single, average/UPGMA and complete linkage clustering; profiling libraries
This package provides a function to create a dendrogram from a
list of items and a distance function between them. Initially
a singleton cluster is created for each item, and then new,
bigger clusters are created by merging the two clusters with
least distance between them. The distance between two clusters
is calculated according to the linkage type. The dendrogram
represents not only the clusters but also the order on which
they were created.
.
This package has many implementations with different
performance characteristics. There are SLINK and CLINK
algorithm implementations that are optimal in both space and
time. There are also naive implementations using a distance
matrix. Using the dendrogram function from
Data.Clustering.Hierarchical automatically chooses the best
implementation we have.
.
This package provides a library for the Haskell programming language, compiled
for profiling. See http://www.haskell.org/ for more information on Haskell.
Description-md5: 2ed7496693bb612eee3b8d45d5f19334