How to Install and Uninstall r-cran-glmmtmb Package on Ubuntu 20.10 (Groovy Gorilla)
Last updated: January 23,2025
1. Install "r-cran-glmmtmb" package
Please follow the guidance below to install r-cran-glmmtmb on Ubuntu 20.10 (Groovy Gorilla)
$
sudo apt update
Copied
$
sudo apt install
r-cran-glmmtmb
Copied
2. Uninstall "r-cran-glmmtmb" package
This guide let you learn how to uninstall r-cran-glmmtmb on Ubuntu 20.10 (Groovy Gorilla):
$
sudo apt remove
r-cran-glmmtmb
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the r-cran-glmmtmb package on Ubuntu 20.10 (Groovy Gorilla)
Package: r-cran-glmmtmb
Architecture: amd64
Version: 1.0.2.1-1
Priority: optional
Section: universe/gnu-r
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian R Packages Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 5599
Depends: r-base-core (>= 4.0.2-1build1), r-api-4.0, r-cran-tmb (>= 1.7.14), r-cran-lme4 (>= 1.1-18.9000), r-cran-matrix, r-cran-nlme, r-cran-rcppeigen, libc6 (>= 2.29), libgcc-s1 (>= 3.0), libgomp1 (>= 4.9), libstdc++6 (>= 5.2)
Recommends: r-cran-testthat, r-cran-pscl
Suggests: r-cran-knitr, r-cran-rmarkdown, r-cran-mass, r-cran-lattice, r-cran-ggplot2 (>= 2.2.1), r-cran-mlmrev, r-cran-bbmle (>= 1.0.19), r-cran-coda, r-cran-reshape2, r-cran-car (>= 3.0.6), r-cran-emmeans (>= 1.4), r-cran-estimability, r-cran-multcomp, r-cran-effects (>= 4.0-1), r-cran-broom, r-cran-plyr, r-cran-png, r-cran-boot, r-cran-xtable, r-cran-numderiv
Filename: pool/universe/r/r-cran-glmmtmb/r-cran-glmmtmb_1.0.2.1-1_amd64.deb
Size: 3573376
MD5sum: 5c0efaa453cf8c0a1ed872584f08d49a
SHA1: a76e76620513885905f9c8094aea06beb99371cd
SHA256: 942359b21daaaaf9e7657db72cf4e1ec84a944e4ca9b95647852606eec36dd72
SHA512: 2ac317fd9505f7ae2cee2228ad06185ece2efa9ed7717b01b998414b15bae2dfcac3d0ff16706b4bd34e4f5299584070feb0d99185322f2d7db5ee598836267b
Homepage: https://cran.r-project.org/package=glmmTMB
Description-en: Generalized Linear Mixed Models using Template Model Builder
Fit linear and generalized linear mixed models with various
extensions, including zero-inflation. The models are fitted using maximum
likelihood estimation via 'TMB' (Template Model Builder). Random effects are
assumed to be Gaussian on the scale of the linear predictor and are integrated
out using the Laplace approximation. Gradients are calculated using automatic
differentiation.
Description-md5: e1b6575a731075ace68532f6c752e23c
Architecture: amd64
Version: 1.0.2.1-1
Priority: optional
Section: universe/gnu-r
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian R Packages Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 5599
Depends: r-base-core (>= 4.0.2-1build1), r-api-4.0, r-cran-tmb (>= 1.7.14), r-cran-lme4 (>= 1.1-18.9000), r-cran-matrix, r-cran-nlme, r-cran-rcppeigen, libc6 (>= 2.29), libgcc-s1 (>= 3.0), libgomp1 (>= 4.9), libstdc++6 (>= 5.2)
Recommends: r-cran-testthat, r-cran-pscl
Suggests: r-cran-knitr, r-cran-rmarkdown, r-cran-mass, r-cran-lattice, r-cran-ggplot2 (>= 2.2.1), r-cran-mlmrev, r-cran-bbmle (>= 1.0.19), r-cran-coda, r-cran-reshape2, r-cran-car (>= 3.0.6), r-cran-emmeans (>= 1.4), r-cran-estimability, r-cran-multcomp, r-cran-effects (>= 4.0-1), r-cran-broom, r-cran-plyr, r-cran-png, r-cran-boot, r-cran-xtable, r-cran-numderiv
Filename: pool/universe/r/r-cran-glmmtmb/r-cran-glmmtmb_1.0.2.1-1_amd64.deb
Size: 3573376
MD5sum: 5c0efaa453cf8c0a1ed872584f08d49a
SHA1: a76e76620513885905f9c8094aea06beb99371cd
SHA256: 942359b21daaaaf9e7657db72cf4e1ec84a944e4ca9b95647852606eec36dd72
SHA512: 2ac317fd9505f7ae2cee2228ad06185ece2efa9ed7717b01b998414b15bae2dfcac3d0ff16706b4bd34e4f5299584070feb0d99185322f2d7db5ee598836267b
Homepage: https://cran.r-project.org/package=glmmTMB
Description-en: Generalized Linear Mixed Models using Template Model Builder
Fit linear and generalized linear mixed models with various
extensions, including zero-inflation. The models are fitted using maximum
likelihood estimation via 'TMB' (Template Model Builder). Random effects are
assumed to be Gaussian on the scale of the linear predictor and are integrated
out using the Laplace approximation. Gradients are calculated using automatic
differentiation.
Description-md5: e1b6575a731075ace68532f6c752e23c